Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students choose HiRise camera targets on Mars

27.09.2007
Last week, third-grade students from Sunridge Elementary School in Phoenix, Ariz., saw their chosen spot on Mars released to the world in a new image from the High Resolution Imaging Experiment camera, known as the HiRISE camera.

This week, an astronomy and space research class at the Alternative Secondary School of Economics in Budapest, Hungary, chose HiRISE's "student image of the week," which has been released worldwide via the Web site, http://hirise.lpl.arizona.edu. The HiRISE camera is orbiting on NASA's Mars Reconnaissance Orbiter and is operated at The University of Arizona in Tucson.

In the past six months, more than 1,500 students in grades three to 14 in schools as far-flung as Hungary, Nepal, Curaçao, India, Arizona and New Jersey submitted candidate targets for HiRISE, places on Mars that may have once been covered in water. Because of time and camera constraints, only 12 of the suggested targets were chosen for the first round. All participating students, however, were invited to scrutinize the HiRISE images for signs of water or ice, as well as write captions for the images.

The Phoenix third-graders suggested that HiRISE take an image of a valley system called Iberus Vallis, located on the southeast flank of the volcano, Elysium Mons, in the northern lowland of Mars. The Budapest students chose a region south of a plateau named Euripus Mons, which is east of the Hellas impact basin in Mars' southern hemisphere, because they wanted a sharp view of the debris apron, which may be an ice-created flow.

The HiRISE team, headed by UA Professor Alfred McEwen of the Lunar and Planetary Laboratory, along with NASA's Quest program have announced their second challenge for students in classrooms around the world to select the next targets in HiRISE's search for features formed by water on Mars. The HiRISE Challenge gives students an opportunity to experience being virtual members of the science team and participate in cutting-edge Mars research.

Virginia Gulick of the NASA Ames Research Center and the SETI Institute leads the HiRISE educational outreach program.

"We want students and teachers to learn more about Mars and have experiences similar to science team members," Gulick said. "Students not only suggest targets, but actually analyze images and write captions for them. This is similar to what the science team routinely does. To my knowledge, unless they're already working with the team, students have never had this opportunity to help write captions and experience this part of the process."

Students and teachers can signup online at http://quest.nasa.gov/challenges/hirise. HiRISE images are online at http://hirise.lpl.arizona.edu and http://marsoweb.nas.nasa.gov/HiRISE.

The HiRISE camera is the most powerful camera to orbit any planet other than Earth. It takes images of 3.5-milewide (6 kilometer) swaths as the orbiter flies at about 7,500 mph between 155 and 196 miles (250 to 316 kilometers) above Mars' surface. HiRISE science imaging began in November 2006 and will continue at least through November 2008.

The HiRISE camera is also known as the People's Camera because the public can easily and quickly access the images, and because team scientists are working to give the public more opportunities to suggest where on Mars'

surface are good places to point the camera.

Information about the Mars Reconnaissance Orbiter spacecraft is online at http://www.nasa.gov/mro. The mission is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Science Mission Directorate, Washington, D.C. Lockheed Martin Space Systems, of Denver, is the prime contractor and built the spacecraft.

Ball Aerospace and Technologies Corp., of Boulder, Colo., built the HiRISE camera.

CONTACT: Virginia Gulick (650-604-0781; vgulick@mail.arc.nasa.gov)

Lori Stiles | University of Arizona
Further information:
http://hirise.lpl.arizona.edu

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>