Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students choose HiRise camera targets on Mars

27.09.2007
Last week, third-grade students from Sunridge Elementary School in Phoenix, Ariz., saw their chosen spot on Mars released to the world in a new image from the High Resolution Imaging Experiment camera, known as the HiRISE camera.

This week, an astronomy and space research class at the Alternative Secondary School of Economics in Budapest, Hungary, chose HiRISE's "student image of the week," which has been released worldwide via the Web site, http://hirise.lpl.arizona.edu. The HiRISE camera is orbiting on NASA's Mars Reconnaissance Orbiter and is operated at The University of Arizona in Tucson.

In the past six months, more than 1,500 students in grades three to 14 in schools as far-flung as Hungary, Nepal, Curaçao, India, Arizona and New Jersey submitted candidate targets for HiRISE, places on Mars that may have once been covered in water. Because of time and camera constraints, only 12 of the suggested targets were chosen for the first round. All participating students, however, were invited to scrutinize the HiRISE images for signs of water or ice, as well as write captions for the images.

The Phoenix third-graders suggested that HiRISE take an image of a valley system called Iberus Vallis, located on the southeast flank of the volcano, Elysium Mons, in the northern lowland of Mars. The Budapest students chose a region south of a plateau named Euripus Mons, which is east of the Hellas impact basin in Mars' southern hemisphere, because they wanted a sharp view of the debris apron, which may be an ice-created flow.

The HiRISE team, headed by UA Professor Alfred McEwen of the Lunar and Planetary Laboratory, along with NASA's Quest program have announced their second challenge for students in classrooms around the world to select the next targets in HiRISE's search for features formed by water on Mars. The HiRISE Challenge gives students an opportunity to experience being virtual members of the science team and participate in cutting-edge Mars research.

Virginia Gulick of the NASA Ames Research Center and the SETI Institute leads the HiRISE educational outreach program.

"We want students and teachers to learn more about Mars and have experiences similar to science team members," Gulick said. "Students not only suggest targets, but actually analyze images and write captions for them. This is similar to what the science team routinely does. To my knowledge, unless they're already working with the team, students have never had this opportunity to help write captions and experience this part of the process."

Students and teachers can signup online at http://quest.nasa.gov/challenges/hirise. HiRISE images are online at http://hirise.lpl.arizona.edu and http://marsoweb.nas.nasa.gov/HiRISE.

The HiRISE camera is the most powerful camera to orbit any planet other than Earth. It takes images of 3.5-milewide (6 kilometer) swaths as the orbiter flies at about 7,500 mph between 155 and 196 miles (250 to 316 kilometers) above Mars' surface. HiRISE science imaging began in November 2006 and will continue at least through November 2008.

The HiRISE camera is also known as the People's Camera because the public can easily and quickly access the images, and because team scientists are working to give the public more opportunities to suggest where on Mars'

surface are good places to point the camera.

Information about the Mars Reconnaissance Orbiter spacecraft is online at http://www.nasa.gov/mro. The mission is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Science Mission Directorate, Washington, D.C. Lockheed Martin Space Systems, of Denver, is the prime contractor and built the spacecraft.

Ball Aerospace and Technologies Corp., of Boulder, Colo., built the HiRISE camera.

CONTACT: Virginia Gulick (650-604-0781; vgulick@mail.arc.nasa.gov)

Lori Stiles | University of Arizona
Further information:
http://hirise.lpl.arizona.edu

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>