Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SOHO's new catch: its first officially periodic comet

26.09.2007
It is nothing new for the ESA/NASA Solar and Heliospheric Observatory (SOHO) to discover another comet – it has already found more than 1350. But the latest is a bit different - SOHO had spotted it twice before.

For the first time, SOHO’s Large Angle and Spectrometric Coronagraph Experiment (LASCO) has found a rare type of comet called a periodic comet (which flies by the Sun at regular intervals). While many SOHO comets are believed to be periodic, this is the first one that has been conclusively proven and officially declared as such.

Astronomers have seen thousands of comets but classified only around 190 as periodic. Many more are proposed to be periodic, but they only gain this classification officially if they are seen to follow their orbits around the Sun more than twice, and have orbital periods of less than two hundred years. The most famous periodic comet is Halley’s comet, returning every 76 years, with its last close pass to the Sun taking place in 1986.

SOHO’s new catch has a much smaller orbit, taking approximately four years to travel once around the Sun. It was first seen in September 1999, and then again in September 2003. In 2005, German PhD student Sebastian Hoenig realised that the two comets were so similar in orbit that they might actually be the same object.

To test his theory, he calculated a combined orbit for the comet, and consequently predicted that it would return on 11 September 2007. Sebastian's prediction proved to be extremely accurate – the comet reappeared in SOHO's LASCO camera right on schedule, and has now been given the official designation of P/2007 R5 (SOHO).

There is a puzzling aspect, however, as the comet does not look exactly like a comet. It has no visible tail or coma of dust and gas. Initially, some scientists wondered if it were actually an asteroid, a chunk of space-rock rather than a chunk of space-ice. However, P/2007 R5 (SOHO) did exhibit some cometary characteristics. As it passed to within 7.9 million kilometres of the Sun, around 5% of the distance from the Earth to the Sun, they observed it brighten by a factor of around a million. This is common behaviour for a comet.

So P/2007 R5 (SOHO) seems to behave like a comet, even though it doesn’t really look like one. “It is quite possibly an extinct comet nucleus of some kind,” says Karl Battams, who runs SOHO's comet discovery programme. Extinct comets are those that have expelled most of their volatile ice and have little left to form a tail or coma. They are theorised to be common objects amongst the celestial bodies orbiting close to the Sun.

The comet faded as quickly as it brightened, and soon became too faint for SOHO's instruments to see it. Estimates show that P/2007 R5 (SOHO) is probably only 100-200 metres in diameter. Given how small and faint this object is, and how close it still is to the Sun, it is an extremely difficult target for observers on Earth to pick out in the sky.

Now we know for certain that P/2007 R5 (SOHO) is there, astronomers will be watching closely for it during its next return in September 2011.

Bernhard Fleck | alfa
Further information:
http://www.esa.int/esaSC/SEMAU2C1S6F_index_0.html

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>