Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heat pipes for mountain skiers

26.09.2007
Researchers from the Lavochkin Research and Production Association have invented a way to preserve snow on the mountain-skiing and racing routes, even in warm weather.

The artificial cooling systems, which are being developed by the researchers, are based on the use of specially-constructed heat pipes. The authors suggest that such a system could be used during the Olympic Games in Sochi – a town known for its uncertain weather.

The principle of operation of these heat pipes is well-known. Simply speaking, it is as follows - in the closed space (in a long and narrow pipe), heavily heated gas turns into liquid and evaporates again. However, these processes are spatially separated. At the one end, in the heating zone, the liquid evaporates – the process requires energy consumption, i.e., it goes with absorption of heat. At the other end, in the cooling zone, the liquid condenses thus cooling the ambient space. Therefore, heating one end of a long pipe can cool the other end.

The question arises how to make the liquid return back to the evaporation zone. If this is a heating pipe, which helps, for example, to cool the house foundation in the permafrost area (so that the house did not “drift” in summer), the device is placed vertically, and the liquid simply flows down by force of gravity. But what can be done if the pipe is place horizontally or it is curved as an arch under the mountain-skiing route?

“Outer space experience” helped the researchers to solve the problem – they specialize in how extraterrestrial objects operate in weightlessness, without help from terrestrial gravitation. The researchers tried cutting superfine capillary grooves on the inside walls of the pipes. This capillary structure allowed the liquid into the evaporation zone at any position of the pipes in space – because capillary forces act independently of the capillary's orientation. Long grooves with a width of less than a micron were created using techniques developed by colleagues of the “outer space engineers” – at Bauman Moscow State Technical University.

To cool the condensation zone, the researchers used special devices called Peltier coolers (elements) named after Jean Charle Atanase Peltier who discovered the heat release or absorption effect when electric current runs through a switch connection of two metals, alloys or semi-conductors. These elements allow the necessary cooling in the condensation zone with low electricity consumption, which makes the entire system very economical. If the thermal conductivity of heat pipes is higher than that of gold and copper is taken into account, the system is extremely efficient. this system is also secure, weighs little and is reliable, as it has no movable parts. It should be particularly emphasized that this is an original Russian technology protected by patents.

More than 500 devices have been put into operation. Their advantage is high reliability as the pipes are placed one metre apart, and if one or more devices breaks down, it does not adversely affect the entire system. All devices are identical in construction, and each can regulate temperature independently.

In the future, these techniques will be used for the Olympic Games, establishing a common artificial climate system controlled from a single centre. We expect that the Olympics 2014 in Sochi will be covered by crisp frosty snow, even if grass grows green and crocuses bloom in the vicinity. This is thanks to the system designed by the researchers from the Lavochkin Research and Production Association.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>