Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists discover novel quantum effect

21.09.2007
In a discovery of potentially burning interest to computer and chip manufacturers, physicists at Würzburg University have demonstrated a previous unknown quantum effect - and this could be a big step forward in the development of new, cool computer technologies. The researchers have published their findings in the latest issue of Science, in a joint publication with theoretical physicist from Stanford University.

Most laptop users notice it skin deep: when you place your mobile companion on your lap and go surfing the internet for a while, the computer gets really warm. For the average user this may not seem such a big deal. But heating really poses a problem for the semiconductor industry, because heat development severely limits the development of future generations of chips - and thus of laptops, and PC's in general.

The market demands ever improving performance from chips and computer. To satisfy this demand, more and more transistors must be crammed into the same surface area, and when an electrical current it applied to these transistors, they produce considerable heat. "To increase the speed of a computer, one must increase the amount of current flowing through its chips, thus increasing the side effect of heating" explains Prof. Hartmut Buhmann, responsible for the team conducting the research. "This may bring about so much heat that temperature becomes the limiting factor in performance." Actually, high performance computers already today use water cooling to deal with this issue.

"The techniques that we have recently discovered here in Wuerzburg could alleviate the issue of chips overheating" says Prof. Laurens W. Molenkamp, head of the chair for experimental physics III: "Using the quantum spin Hall effect which we for the first time have demonstrated here, it is possible to transport and manipulate information without energy loss." This means that a future computer could operate extremely fast without losing its cool!

For discoveries in this vein, Wuerzburg University appears to be the place to be. 25 years earlier, at the same chair, then headed by Gottfried Landwehr, Klaus von Klitzing made the discovery of the (charge) quantum Hall effect, which determines the Hall resistance of a semiconductor field effect transistor in a strong magnetic field, and for which he was awarded the Nobel prize for physics in 1985.

Further information:
Prof. Dr. Hartmut Buhmann, ++49 (931) 888-5778, hartmut.buhmann@physik.uni-wuerzburg.de

Prof. Dr. Laurens Molenkamp, ++49 (931) 888-4925, molenkamp@physik.uni-wuerzburg.de

Markus König1, Steffen Wiedmann1, Christoph Brüne1, Andreas Roth1, Hartmut Buhmann1, Laurens W. Molenkamp1, Xiao-Liang Qi2, and Shou-Cheng Zhang2: "Quantum Spin Hall Insulator State in HgTe Quantum Wells", Science, published online on September 20, 2007, DOI: 10.1126/science.1148047

1Physikalisches Institut (Lehrstuhl für Experimentelle Physik III), Universität Würzburg, D-97074 Würzburg, Germany

2Department of Physics, McCullough Building, Stanford University, Stanford, CA 94305-4045, USA

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>