Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists discover novel quantum effect

21.09.2007
In a discovery of potentially burning interest to computer and chip manufacturers, physicists at Würzburg University have demonstrated a previous unknown quantum effect - and this could be a big step forward in the development of new, cool computer technologies. The researchers have published their findings in the latest issue of Science, in a joint publication with theoretical physicist from Stanford University.

Most laptop users notice it skin deep: when you place your mobile companion on your lap and go surfing the internet for a while, the computer gets really warm. For the average user this may not seem such a big deal. But heating really poses a problem for the semiconductor industry, because heat development severely limits the development of future generations of chips - and thus of laptops, and PC's in general.

The market demands ever improving performance from chips and computer. To satisfy this demand, more and more transistors must be crammed into the same surface area, and when an electrical current it applied to these transistors, they produce considerable heat. "To increase the speed of a computer, one must increase the amount of current flowing through its chips, thus increasing the side effect of heating" explains Prof. Hartmut Buhmann, responsible for the team conducting the research. "This may bring about so much heat that temperature becomes the limiting factor in performance." Actually, high performance computers already today use water cooling to deal with this issue.

"The techniques that we have recently discovered here in Wuerzburg could alleviate the issue of chips overheating" says Prof. Laurens W. Molenkamp, head of the chair for experimental physics III: "Using the quantum spin Hall effect which we for the first time have demonstrated here, it is possible to transport and manipulate information without energy loss." This means that a future computer could operate extremely fast without losing its cool!

For discoveries in this vein, Wuerzburg University appears to be the place to be. 25 years earlier, at the same chair, then headed by Gottfried Landwehr, Klaus von Klitzing made the discovery of the (charge) quantum Hall effect, which determines the Hall resistance of a semiconductor field effect transistor in a strong magnetic field, and for which he was awarded the Nobel prize for physics in 1985.

Further information:
Prof. Dr. Hartmut Buhmann, ++49 (931) 888-5778, hartmut.buhmann@physik.uni-wuerzburg.de

Prof. Dr. Laurens Molenkamp, ++49 (931) 888-4925, molenkamp@physik.uni-wuerzburg.de

Markus König1, Steffen Wiedmann1, Christoph Brüne1, Andreas Roth1, Hartmut Buhmann1, Laurens W. Molenkamp1, Xiao-Liang Qi2, and Shou-Cheng Zhang2: "Quantum Spin Hall Insulator State in HgTe Quantum Wells", Science, published online on September 20, 2007, DOI: 10.1126/science.1148047

1Physikalisches Institut (Lehrstuhl für Experimentelle Physik III), Universität Würzburg, D-97074 Würzburg, Germany

2Department of Physics, McCullough Building, Stanford University, Stanford, CA 94305-4045, USA

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>