Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers detect stellar ashes at dawn of time

11.04.2002


Using a powerful instrument on a telescope in Hawaii, UK astronomers have found ashes from a generation of stars that died over 10 billion years ago. This is the first time that the tell-tale cosmic dust has been detected at such an early stage in the evolution of the universe.

Dr. Kate Isaak of Cambridge University will be announcing these exciting new results at the National Astronomy Meeting in Bristol on 11th April 2002.

Using the SCUBA (Submillimetre Common-User Bolometer Array) camera on the James Clerk Maxwell Telescope in Hawaii, the team of British astronomers observed a sample of the most distant quasars known, to detect their primeval `host` galaxies. The submillimetre wavelength radiation detected by SCUBA comes from large amounts of cool dust, a substance formed in supernovae and/or the atmospheres of old stars.



Team leader Dr. Robert Priddey (Imperial College) said "These quasars are the most distant submillimetre sources known. We`re looking more than nine-tenths of the way back to the birth of the universe in the Big Bang."

The quasars are extremely far from us, as measured by their very high redshifts of 5-6. These huge distances mean that their light was emitted when the universe was less than a tenth of its current age -- a mere billion years after the Big Bang. Consequently, the host galaxies are caught when they are extremely young, and when astronomers might expect to see a burst of star formation.

Dr. Priddey explained "It`s amazing enough that these quasars, powered by billion solar mass black holes, should already exist only a billion years after the Big Bang. That these quasars also appear to contain so much dust yields important clues to the formation of massive galaxies in the youthful cosmos."

Although it is not yet known whether the dust in these quasars is heated by hot, young stars within the galaxy, or directly by the quasar itself, the very existence of the dust and its constituent elements such as silicon and carbon implies that a large mass of stars have already been born, grown old and expired, within only a billion years of the Big Bang.

Dr. Isaak said "These observations of very distant quasars are part of a programme looking at the submillimetre emission of quasars from low to high redshift. If we hunt for ever higher redshift quasars, we might catch the epoch at which the first dust forms."

Team member Dr. Richard McMahon (University of Cambridge) added "The stars that made the carbon and silicon in these quasars are probably like the stars that made the carbon in our own bodies. It is very exciting to be able to learn when the chemical elements in our bodies were made. These quasars seem to be forming stars at a rate of around 1000 stars like the Sun per year."

Dr Robert Priddey | alphagalileo

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>