Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Astronomers Find Bizarre Planet-Mass Object Orbiting Neutron Star

14.09.2007
Using NASA’s Swift and Rossi X-ray Timing Explorer (RXTE) satellites, astronomers have discovered one of the most bizarre planet-mass objects ever found.

The object’s minimum mass is only about 7 times the mass of Jupiter. But instead of orbiting a normal star, this low-mass body orbits a rapidly spinning pulsar. It orbits the pulsar every 54.7 minutes at an average distance of only about 230,000 miles (slightly less than the Earth-Moon distance).


In this artist depiction of the SWIFT J1756.9-2508 system, the foreground object is the planet-mass object. The pulsar, located at the upper right, is tidally distorting the companion into a teardrop-shaped object, and ripping gas from it. This material flows in a stream toward the pulsar and forms a disk around it. Eventually, enough gas builds up in the disk to produce an outburst bright enough to make the system visible from Earth. Click on image to enlarge. Credit: Aurore Simonnet/Sonoma State University

"This object is merely the skeleton of a star," says co-discoverer Craig Markwardt of NASA’s Goddard Space Flight Center in Greenbelt, Md. "The pulsar has eaten away the star’s outer envelope, and all the remains is its helium-rich core."

Hans Krimm of NASA Goddard discovered the system on June 7, when Swift’s Burst Alert Telescope picked up an outburst of X rays and gamma rays in the direction of the galactic center. The source was named SWIFT J1756.9-2508 for its sky coordinates in the constellation Sagittarius.

RXTE began observing SWIFT J1756.9 on June 13 with its Proportional Counter Array (PCA). After analyzing the PCA data, Markwardt realized that the object was pulsing in X rays 182.07 times per second, which told him that it was a rapidly spinning pulsar. These so-called millisecond pulsars are neutron stars that spin hundreds of times per second, faster than a kitchen blender. Normally, the spin rate of neutron stars slows down as they age, but much like we can pull a string to “spin up” a top, gas spiraling onto a neutron star from its companion can maintain or even increase its fast spin.

In the case of SWIFT J1756.9-2508, Markwardt detected subtle modulations in the X-ray timing data that revealed a low-mass companion tugging the pulsar toward and away from Earth. His calculations show that the companion has a minimum mass about 7 times that of Jupiter. Because we don’t know the orbital inclination of the system, the companion’s actual mass is unknown, but it is extremely unlikely to exceed 30 Jupiters.

MIT astronomers led by Deepto Chakrabarty also observed the system with RXTE, before it faded to invisibility on June 21. Chakrabarty’s group reached identical conclusions, and the two teams have coauthored a paper that has been accepted for publication in the Astrophysical Journal Letters.

The system is only the eighth millisecond pulsar that is observed to be accreting mass from a companion. Only one other such system has a pulsar companion with such a low mass. The companion in this system, XTE J1807-294, also has a minimum mass of about 7 Jupiters. "Given that we don’t know the exact mass of either companion, ours could be the smallest," says Krimm.

The system probably formed several billion years ago, when it consisted of a very massive star and a smaller star with perhaps 1 to 3 solar masses. The more massive star evolved quickly and exploded as a supernova, leaving behind the neutron star. The smaller star eventually started to puff up en route to becoming a red giant, and the two objects became embedded in the extended stellar envelope. This drained orbital energy, causing the two stars to draw ever nearer, while simultaneously ejecting the envelope.

Today, the two objects are so close to each other than the neutron star’s powerful gravity produces a tidal bulge on its companion, siphoning off gas that flows into a disk that surrounds the neutron star. The flow eventually becomes unstable and dumps large quantities of gas onto the neutron star, causing an outburst like the one observed in June.

Evolution models by Christopher Deloye of Northwestern University suggest that the low-mass companion is helium dominated. "Despite its extremely low mass, the companion isn’t considered a planet because of its formation," says Deloye. "It’s essentially a white dwarf that has been whittled down to a planetary mass."

After billions of years, little remains of the companion star, and it remains unclear whether it will survive. "It’s been taking a beating, but that’s part of nature," adds Krimm.

With an estimated distance of roughly 25,000 light-years, the system is normally too faint to be detected at any wavelength, and is only visible during an outburst. SWIFT J1756.9 has never been seen to erupt until this June, so as Markwardt points out, "We don't know how long it will slumber before it wakes up again."

Robert Naeye | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/goddard/news/topstory/2007/millisecond_pulsar.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>