Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The missing link in the evolution of magnetic cataclysmic stars?

14.09.2007
An international team of astronomers might have discovered the missing link in the evolution of the so-called magnetic cataclysmic variable stars.

They determined the spin and orbital periods of the binary star Paloma. They found that the Paloma system has a weird way of rotating that fills the gap between two classes of magnetic cataclysmic stars. Their results will soon be published in Astronomy & Astrophysics.

Cataclysmic variables (CVs) are a class of binary stars made up of a white dwarf [1] and a normal star much like our Sun. Both stars orbit so close to each other that the white dwarf accretes matter from the companion star. In most of the several hundred CVs known, the matter spirals around the white dwarf, forming a disk, before being accreted and incorporated into the star. About 20% of the known CVs include a white dwarf with a strong magnetic field of several million Gauss [2]. They are known as “magnetic CVs”. The magnetic field of the white dwarf can be strong enough to disrupt the accretion disk or even to prevent the disc from forming.

Astronomers currently know two classes of magnetic CVs:

• Polars (also known as the prototype star AM Herculis) have a strong enough magnetic field to synchronize the spin period of the stars and the orbital period of the system [3]. A departure from synchronization is observed for four AM Herculis stars, which are thought to be normal AM Herculis systems currently desynchronized by a recent nova explosion. The difference between the spin period and the orbital period, that is, the degree of asynchronism, is less than 2% for these near-synchronous polars.

• Intermediate polars (known as DQ Herculis stars) have a lower magnetic field, and the spin period of the stars is shorter than the orbital period. The majority of the DQ Herculis stars have orbital periods longer than 3 hours and spin periods ranging from 33 seconds to 1 hour.

In a cataclysmic variable system, both stars are so close to each other (the whole system would match the size of our Sun) that astronomers cannot distinguish one star from the other. For studying CVs, they rely on indirect observations: measuring the variation in the brightness of the system, thereby estimating its characteristics (orbit size, period).

Dr. R. Schwarz and his colleagues [4] studied the candidate magnetic CV Paloma (also known as RX J0524+42), which has not yet been characterised. It does not fit either of the known CVs categories. The team presents both long- and short-term monitoring of this stellar system, using several European telescopes (1.2m OHP, 70 cm AIP, 1.23m Calar Alto), over a period ranging from 1995 to 2001. With this monitoring, they built the light curves and estimated the periods of the system. ROSAT observations of the system confirm that it has a strong magnetic field and thus belongs to the magnetic CVs.

From their observations, the team concludes that the faster white dwarf performs 14 spins around its own axis during 13 orbital revolutions. The weird degree of synchronization of the system presents the characteristics that makes Paloma so interesting. This bridges the gap between the two main classes of magnetic CVs: it spins much more slowly than any known intermediate polar, but is too much desynchronized to be an AM Herculis star. Paloma thus revives the old idea that both classes are evolutionarily linked together and that intermediate polars are the ancestors of the older AM Herculis stars. Theoreticians predict that Paloma is in the process of synchronization and should become a spin-locked AM Herculis star over the next 100 million years.

Notes

[1] A white dwarf is a dying star that has exhausted most of its nuclear fuel. It is extremely dense (1 ton per cm3), with about the mass of the Sun and the size of the Earth. Our Sun will become a white dwarf in about 4.5 billion years.

[2] For comparison, the Sun's magnetic field is about 50 Gauss and the magnetic field inside a nuclear medical imaging device is about 10000 Gauss.

[3] The Earth-Moon system illustrates the case for synchronization in astronomy: from the Earth, we always see the same side of the Moon because the spin period of the Moon is the same as its orbital period around the Earth.

[4] The team includes R. Schwarz, A.D. Schwope, A. Staude (Astrophysikalisches Institut Potsdam, Germany), A. Rau (CalTech, USA), G. Hasinger (MPI, Garching, Germany), T. Urrutia (UC Davis, USA), and C. Motch (Observatoire Astronomique, Strasbourg, France).

Jennifer Martin | alfa
Further information:
http://www.aanda.org/content/view/258/42/lang,en/

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>