Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecules of positronium observed in the laboratory for the first time

13.09.2007
Research by UCR physicists could help the development of gamma-ray lasers, explain how matter came to dominate the universe

Physicists at UC Riverside have created molecular positronium, an entirely new object in the laboratory. Briefly stable, each molecule is made up of a pair of electrons and a pair of their antiparticles, called positrons.

The research paves the way for studying multi-positronium interactions – useful for generating coherent gamma radiation – and could one day help develop fusion power generation as well as directed energy weapons such as gamma-ray lasers. It also could help explain how the observable universe ended up with so much more matter than “antimatter.”

Study results appear in the Sept. 13 issue of Nature.

The researchers made the positronium molecules by firing intense bursts of positrons into a thin film of porous silica, which is the chemical name for the mineral quartz. Upon slowing down in silica, the positrons were captured by ordinary electrons to form positronium atoms.

Positronium atoms, by nature, are extremely short-lived. But those positronium atoms that stuck to the internal pore surfaces of silica, the way dirt particles might cling to the inside surface of the holes in a sponge, lived long enough to interact with one another to form molecules of positronium, the physicists found.

“Silica acts in effect like a useful cage, trapping positronium atoms,” said David Cassidy, the lead author of the research paper and an assistant researcher working in the laboratory of Allen Mills, a professor of physics, the research paper’s coauthor. “This is the first step in our experiments. What we hope to achieve next is to get many more of the positronium atoms to interact simultaneously with one another – not just two positronium atoms at a time.”

When an electron meets a positron, their mutual annihilation may ensue or positronium, a briefly stable, hydrogen-like atom, may be formed. The stability of a positronium atom is threatened again when the atom collides with another positronium atom. Such a collision of two positronium atoms can result in their annihilation, accompanied by the production of a powerful and energetic type of electromagnetic radiation called gamma radiation, or the creation of a molecule of positronium, the kind Cassidy and Mills observed in their lab.

“Their research is giving us new ways to understand matter and antimatter,” said Clifford M. Surko, a professor of physics at UC San Diego, who was not involved in the research. “It also provides novel techniques to create even larger collections of antimatter that will likely lead to new science and, potentially, to important new technologies.”

Matter, the “stuff” that every known object is made of, and antimatter cannot co-exist close to each other for more than a very small measure of time because they annihilate each other to release enormous amounts of energy in the form of gamma radiation. The apparent asymmetry of matter and antimatter in the visible universe is an unsolved problem in physics.

Currently, antimatter finds use in medicine where it helps identify diseases with the Positron Emission Tomography or PET scan.

Cassidy and Mills plan to work next on using a more intense positron source to generate a “Bose-Einstein condensate” of positronium – a collection of positronium atoms that are in the same quantum state, allowing for more interactions and gamma radiation. According to them, such a condensate would be necessary for the development of a gamma-ray laser.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>