Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics is making big bucks in the Scottish economy

13.09.2007
From telecommunications and aerospace to pharmacology and IT systems, a range of industries in Scotland are dependant on the application of advanced physics.

A report, Physics and the Scottish Economy, released today, Thursday, 13 September, by the Institute of Physics in Scotland (IOP), shows that more than £8 billion of Scottish economic output is contingent upon physics.

Scotland is making more of physics in its economy than the rest of its UK partners. Often stereotyped as a complicated academic discipline, physics research and its application are crucial to many 21st Century industries.

Alison McLure, National Officer for IOP in Scotland, said, “Physics teachers in our schools and researchers in our universities provide a vital role advancing the education of physics in Scotland. The relevance and applications of physics however go far beyond the classroom or the laboratory and are used to enhance some of the key sectors in our economy, such as manufacturing and telecommunications.”

The report quantifies the scope of physics in the Scottish economy but also calculates its value. While just over four per cent of Scottish workers are involved in industries that depend on physics, the sector punches far above its weight by contributing ten per cent to the nation’s economic output.

Iain Ferguson, Policy Executive at CBI Scotland, said, “The physics-based sector adds real value to the economy and is of growing importance. Employers across Scotland recognise this and are reaching out for employees with relevant skills and understanding.

“The CBI has been putting pressure on government to encourage more students to stick with science so that employers have less trouble recruiting and for young people to make the most of the opportunities that this exciting and wide sector offers.”

The Science Strategy for Scotland was launched by the Scottish Executive in 2001 to ensure that there are enough science students to meet national needs; to increase the effective commercial exploitation of the latest research; and to increase general appreciation of science in the community.

A 2006 progress report by the Scottish Executive suggested that real strides have been made, including the establishment of the SME Collaborative Research Programme, a public sector research group that helps small- to medium-sized businesses with scientific and technological research, and the launch of Science Matters, a three year initiative run by Careers Scotland to promote the uptake of science careers during secondary education.

David Lockwood, Managing Director of Thales Optronics, a world leader in the design and manufacture of advanced electro-optic systems, employing 700 people, 550 of which are based at its headquarters in Glasgow, said: “Having a large number of physics literate graduates is an advantage for any economy and it’s something that should be a path more recognised and encouraged in schools. Unfortunately there is still a shortage of physics and engineering graduates in Scotland despite physics graduates being very attractive to a wide range of employers. Thales Optronics’ success is built on physics and we need a constant flow of individuals with expertise to maintain it.”

Charlie Wallace | alfa
Further information:
http://www.scotland.gov.uk/Topics/Business-Industry/science/16607/5910

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>