Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First detection of a planet that survived the red giant expansion of its parent star. This could be the destiny of our Earth.

13.09.2007
A giant gaseous planet orbiting an old star near the end of its evolution was discovered by an international team led by Roberto Silvotti from the INAF-Osservatorio Astronomico di Capodimonte (Napoli, Italy).

This discovery, published today in Nature, provides a somewhat preliminary picture of what could be the destiny of our Earth once the Sun has exhausted its primary fuel. With an age of about 10 billion years, V 391 Pegasi b — as it is named — is the first planet detected around a post-red giant star and one of the oldest planets ever discovered.

There are already more than two hundred extra-solar planets known. However, the one discovered by Roberto Silvotti, researcher at the INAF-Osservatorio Astronomico di Capodimonte, and by 22 other astronomers of the international team that have signed the manuscript appearing in Nature today, is the first to have survived “the red giant phase”, one of the most dramatic phases of the evolution of its parent star. It has occurred despite an orbital distance of only 1.7 times the medium distance between the Earth and the Sun. During a “red giant phase”, the stars, after exhausting their primary fuel, hydrogen, in the core, experience an enormous expansion (with their volume increasing by a factor of a few millions) that can easily reach and engulf the inner planets.

«The same will happen to the Sun», Roberto Silvotti says. «As far as our planets are concerned, we expect Mercury and Venus to disappear in the Sun’s envelope, whereas Mars should survive. The fate of the Earth is less clear because its position is really at the limit: it appears more likely that the Earth will not survive the red giant expansion of the Sun either, but it is not for sure. All this will happen in about five billion years, when the Earth will be more or less the same age as V 391 Pegasi b, i.e. ten billion years. This makes this gaseous giant, whose mass is at least three times Jupiter’s mass, one of the oldest planets ever discovered. Very unusual is also its parent star, V 391 Pegasi (from which the planet inherits its name, with an extra «b» indicating that it is a secondary body): with a surface temperature near 30,000 degrees, it is the hottest star among those surrounded by a planetary system. So hot that researchers believe that the surface temperature of the planet just discovered could reach 200 degrees Celsius, despite its relatively large orbital distance.

“This discovery occurred almost by chance” Silvotti continues. «We did know that in principle we could find a planet as it is commonly believed that about 5% of the stars have planets, but our primary goal was different: to study the periodicity of the light emission of V 391 Pegasi, which is a variable star with a main period of about 6 minutes». While we were analysing the irregularities of V 391 Pegasi’s luminosity variations with a method called timing method, we began to suspect that the these irregularities might have been caused by a planet. The intensity maxima were reaching the telescopes on the Earth with a small advance or delay of about 5 seconds compared to what was expected. As if the star was continuously moving and forcing the light to cover a distance either smaller or larger. It took seven years of observation and computations to be able to discard other possible interpretations of the data and confirm the only reasonable explanation: the presence of a planet with the properties of V 391 Pegasi b.

As is the case for almost all (98%) the extra-solar planets known, we happen to know that V 391 Pegasi b is there although we still cannot see it directly. «Neither with the largest telescopes available today, nor with those available tomorrow», Silvotti confirms. «But the future generations of telescopes will definitely make such a thing possible.».

It will no doubt take several years before it happens. Until then, his two children will have plenty of time to gaze at the Moon with the pair of binoculars they have just been offered...

Roberto Silvotti | alfa
Further information:
http://www.inaf.it/ufficio-stampa/comunicati-stampa-del-2007/CS_27_130907

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>