Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First detection of a planet that survived the red giant expansion of its parent star. This could be the destiny of our Earth.

A giant gaseous planet orbiting an old star near the end of its evolution was discovered by an international team led by Roberto Silvotti from the INAF-Osservatorio Astronomico di Capodimonte (Napoli, Italy).

This discovery, published today in Nature, provides a somewhat preliminary picture of what could be the destiny of our Earth once the Sun has exhausted its primary fuel. With an age of about 10 billion years, V 391 Pegasi b — as it is named — is the first planet detected around a post-red giant star and one of the oldest planets ever discovered.

There are already more than two hundred extra-solar planets known. However, the one discovered by Roberto Silvotti, researcher at the INAF-Osservatorio Astronomico di Capodimonte, and by 22 other astronomers of the international team that have signed the manuscript appearing in Nature today, is the first to have survived “the red giant phase”, one of the most dramatic phases of the evolution of its parent star. It has occurred despite an orbital distance of only 1.7 times the medium distance between the Earth and the Sun. During a “red giant phase”, the stars, after exhausting their primary fuel, hydrogen, in the core, experience an enormous expansion (with their volume increasing by a factor of a few millions) that can easily reach and engulf the inner planets.

«The same will happen to the Sun», Roberto Silvotti says. «As far as our planets are concerned, we expect Mercury and Venus to disappear in the Sun’s envelope, whereas Mars should survive. The fate of the Earth is less clear because its position is really at the limit: it appears more likely that the Earth will not survive the red giant expansion of the Sun either, but it is not for sure. All this will happen in about five billion years, when the Earth will be more or less the same age as V 391 Pegasi b, i.e. ten billion years. This makes this gaseous giant, whose mass is at least three times Jupiter’s mass, one of the oldest planets ever discovered. Very unusual is also its parent star, V 391 Pegasi (from which the planet inherits its name, with an extra «b» indicating that it is a secondary body): with a surface temperature near 30,000 degrees, it is the hottest star among those surrounded by a planetary system. So hot that researchers believe that the surface temperature of the planet just discovered could reach 200 degrees Celsius, despite its relatively large orbital distance.

“This discovery occurred almost by chance” Silvotti continues. «We did know that in principle we could find a planet as it is commonly believed that about 5% of the stars have planets, but our primary goal was different: to study the periodicity of the light emission of V 391 Pegasi, which is a variable star with a main period of about 6 minutes». While we were analysing the irregularities of V 391 Pegasi’s luminosity variations with a method called timing method, we began to suspect that the these irregularities might have been caused by a planet. The intensity maxima were reaching the telescopes on the Earth with a small advance or delay of about 5 seconds compared to what was expected. As if the star was continuously moving and forcing the light to cover a distance either smaller or larger. It took seven years of observation and computations to be able to discard other possible interpretations of the data and confirm the only reasonable explanation: the presence of a planet with the properties of V 391 Pegasi b.

As is the case for almost all (98%) the extra-solar planets known, we happen to know that V 391 Pegasi b is there although we still cannot see it directly. «Neither with the largest telescopes available today, nor with those available tomorrow», Silvotti confirms. «But the future generations of telescopes will definitely make such a thing possible.».

It will no doubt take several years before it happens. Until then, his two children will have plenty of time to gaze at the Moon with the pair of binoculars they have just been offered...

Roberto Silvotti | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>