Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First detection of a planet that survived the red giant expansion of its parent star. This could be the destiny of our Earth.

13.09.2007
A giant gaseous planet orbiting an old star near the end of its evolution was discovered by an international team led by Roberto Silvotti from the INAF-Osservatorio Astronomico di Capodimonte (Napoli, Italy).

This discovery, published today in Nature, provides a somewhat preliminary picture of what could be the destiny of our Earth once the Sun has exhausted its primary fuel. With an age of about 10 billion years, V 391 Pegasi b — as it is named — is the first planet detected around a post-red giant star and one of the oldest planets ever discovered.

There are already more than two hundred extra-solar planets known. However, the one discovered by Roberto Silvotti, researcher at the INAF-Osservatorio Astronomico di Capodimonte, and by 22 other astronomers of the international team that have signed the manuscript appearing in Nature today, is the first to have survived “the red giant phase”, one of the most dramatic phases of the evolution of its parent star. It has occurred despite an orbital distance of only 1.7 times the medium distance between the Earth and the Sun. During a “red giant phase”, the stars, after exhausting their primary fuel, hydrogen, in the core, experience an enormous expansion (with their volume increasing by a factor of a few millions) that can easily reach and engulf the inner planets.

«The same will happen to the Sun», Roberto Silvotti says. «As far as our planets are concerned, we expect Mercury and Venus to disappear in the Sun’s envelope, whereas Mars should survive. The fate of the Earth is less clear because its position is really at the limit: it appears more likely that the Earth will not survive the red giant expansion of the Sun either, but it is not for sure. All this will happen in about five billion years, when the Earth will be more or less the same age as V 391 Pegasi b, i.e. ten billion years. This makes this gaseous giant, whose mass is at least three times Jupiter’s mass, one of the oldest planets ever discovered. Very unusual is also its parent star, V 391 Pegasi (from which the planet inherits its name, with an extra «b» indicating that it is a secondary body): with a surface temperature near 30,000 degrees, it is the hottest star among those surrounded by a planetary system. So hot that researchers believe that the surface temperature of the planet just discovered could reach 200 degrees Celsius, despite its relatively large orbital distance.

“This discovery occurred almost by chance” Silvotti continues. «We did know that in principle we could find a planet as it is commonly believed that about 5% of the stars have planets, but our primary goal was different: to study the periodicity of the light emission of V 391 Pegasi, which is a variable star with a main period of about 6 minutes». While we were analysing the irregularities of V 391 Pegasi’s luminosity variations with a method called timing method, we began to suspect that the these irregularities might have been caused by a planet. The intensity maxima were reaching the telescopes on the Earth with a small advance or delay of about 5 seconds compared to what was expected. As if the star was continuously moving and forcing the light to cover a distance either smaller or larger. It took seven years of observation and computations to be able to discard other possible interpretations of the data and confirm the only reasonable explanation: the presence of a planet with the properties of V 391 Pegasi b.

As is the case for almost all (98%) the extra-solar planets known, we happen to know that V 391 Pegasi b is there although we still cannot see it directly. «Neither with the largest telescopes available today, nor with those available tomorrow», Silvotti confirms. «But the future generations of telescopes will definitely make such a thing possible.».

It will no doubt take several years before it happens. Until then, his two children will have plenty of time to gaze at the Moon with the pair of binoculars they have just been offered...

Roberto Silvotti | alfa
Further information:
http://www.inaf.it/ufficio-stampa/comunicati-stampa-del-2007/CS_27_130907

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>