Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lighter gas reduces damage to optics in extreme ultraviolet lithography

13.09.2007
Researchers at the University of Illinois have discovered a way to generate light and reduce damage in a leading candidate for next-generation microelectronics lithography. The technique could help pack more power into smaller computer chips.

In the quest for creating computer chips with ever-smaller feature sizes, chip manufacturers are exploring extreme ultraviolet lithography as the next chip-printing technology. For a light source at the necessary wavelength, scientists have turned to a hot, ionized gas called a plasma, generated within a Z-pinch device. But, energetic ions produced in the plasma can damage the mirror responsible for collecting the light.

“By adding a lighter gas to the plasma, we can significantly reduce the damage and extend the lifetime of the collector optics,” said David Ruzic, a professor of nuclear, plasma and radiological engineering and lead author of a paper that describes the technique in the June issue of the journal IEEE Transactions on Plasma Science.

In a Z-pinch device, xenon is fed into a chamber where it collides with a stream of electrons, producing a low-temperature and low-density plasma. This plasma then flows between two cylindrical electrodes, one positioned inside the other. (The “Z” in Z-pinch refers to the direction of current flow along the cylindrical electrodes.)

Next, a large current pulse heats the plasma, while a magnetic field generated by the pulse compresses and confines the plasma. The plasma becomes hotter and denser until it “pinches,” creating the flash of light needed by the chip industry.

As the pulse passes, internal plasma pressure overcomes magnetic confinement, and the hot, dense plasma flies apart. The resulting fast and energetic ions can damage the delicate collector optics.

However, adding a small amount of a lighter gas, such as hydrogen, “significantly reduces both the number and the energy of xenon ions reaching the collector surface, thereby extending the collector’s lifetime while having a negligible effect on the extreme ultraviolet light production,” Ruzic said.

The reduction in xenon energy occurs because the hydrogen ions shield the xenon ions from the high electric field created by the plasma.

“When the plasma flies apart, the less-massive electrons move faster than the hydrogen and xenon ions,” Ruzic said. “The electric field induced by the moving electrons then pulls on the ions and accelerates them. Being much lighter than xenon ions, the hydrogen ions accelerate faster, and shield the xenon ions from some of the electric field.”

By absorbing some of the plasma’s energy, the hydrogen ions prevent the xenon ions from accelerating to the point where they damage the collector surface, thus prolonging the collector’s lifetime.

Xenon is actually the second-best radiator for light at the desired wavelength, Ruzic said. “We can get three times as much light from tin, but tin is a condensable metal and makes quite a mess on the mirrors. We are now looking at ways to clean the mirrors during chip production.”

With Ruzic, co-authors of the paper are U. of I. graduate students Keith Thompson and Josh Spencer, postdoctoral research associate Shailendra Srivastava, and former postdoctoral researcher associates Brian Jurczyk and Erik Antonsen.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>