Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lighter gas reduces damage to optics in extreme ultraviolet lithography

13.09.2007
Researchers at the University of Illinois have discovered a way to generate light and reduce damage in a leading candidate for next-generation microelectronics lithography. The technique could help pack more power into smaller computer chips.

In the quest for creating computer chips with ever-smaller feature sizes, chip manufacturers are exploring extreme ultraviolet lithography as the next chip-printing technology. For a light source at the necessary wavelength, scientists have turned to a hot, ionized gas called a plasma, generated within a Z-pinch device. But, energetic ions produced in the plasma can damage the mirror responsible for collecting the light.

“By adding a lighter gas to the plasma, we can significantly reduce the damage and extend the lifetime of the collector optics,” said David Ruzic, a professor of nuclear, plasma and radiological engineering and lead author of a paper that describes the technique in the June issue of the journal IEEE Transactions on Plasma Science.

In a Z-pinch device, xenon is fed into a chamber where it collides with a stream of electrons, producing a low-temperature and low-density plasma. This plasma then flows between two cylindrical electrodes, one positioned inside the other. (The “Z” in Z-pinch refers to the direction of current flow along the cylindrical electrodes.)

Next, a large current pulse heats the plasma, while a magnetic field generated by the pulse compresses and confines the plasma. The plasma becomes hotter and denser until it “pinches,” creating the flash of light needed by the chip industry.

As the pulse passes, internal plasma pressure overcomes magnetic confinement, and the hot, dense plasma flies apart. The resulting fast and energetic ions can damage the delicate collector optics.

However, adding a small amount of a lighter gas, such as hydrogen, “significantly reduces both the number and the energy of xenon ions reaching the collector surface, thereby extending the collector’s lifetime while having a negligible effect on the extreme ultraviolet light production,” Ruzic said.

The reduction in xenon energy occurs because the hydrogen ions shield the xenon ions from the high electric field created by the plasma.

“When the plasma flies apart, the less-massive electrons move faster than the hydrogen and xenon ions,” Ruzic said. “The electric field induced by the moving electrons then pulls on the ions and accelerates them. Being much lighter than xenon ions, the hydrogen ions accelerate faster, and shield the xenon ions from some of the electric field.”

By absorbing some of the plasma’s energy, the hydrogen ions prevent the xenon ions from accelerating to the point where they damage the collector surface, thus prolonging the collector’s lifetime.

Xenon is actually the second-best radiator for light at the desired wavelength, Ruzic said. “We can get three times as much light from tin, but tin is a condensable metal and makes quite a mess on the mirrors. We are now looking at ways to clean the mirrors during chip production.”

With Ruzic, co-authors of the paper are U. of I. graduate students Keith Thompson and Josh Spencer, postdoctoral research associate Shailendra Srivastava, and former postdoctoral researcher associates Brian Jurczyk and Erik Antonsen.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>