Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cluster and Double Star uncover more on bright aurorae

12.09.2007
Cluster data has helped provide scientists with a new view of magnetospheric processes, challenging existing theories about magnetic substorms that cause aurorae and perturbations in GPS signals.

The onset of magnetic substorms that originate in Earth’s magnetosphere has been explained by two competing models: current disruption and near-earth reconnection. Current beliefs have been challenged using data from ESA’s Cluster satellites, and CNSA’s Double Star, a mission with ESA participation. A study published on 20 January 2007 in Geophysical Research Letters suggests a third type of substorm onset.

Magnetic substorms often cause bright and colorful aurorae at high latitudes, in places such as Scandinavia or Canada. These aurorae are caused by energetic electrons that spiral down Earth’s magnetic field lines and collide with atmospheric atoms at an altitude of about 100 km. The energetic electrons come from the magnetotail, located on the nightside of Earth where the solar wind stretches Earth’s magnetic field lines into a long tail.

At the centre of the magnetotail is a denser region known as the plasma sheet. Plasma is a gas composed of ions and electrons which is electrically neutral. It is spread over large distances in space and guided by the action of magnetic and electric fields. A substorm induces violent changes in the plasma sheet. It energises ions and electrons and hurls them Earthward. The substorm itself can occur as a series or in isolation.

Apart from producing the beautiful show of light, substorms also excite a large portion of Earth's ionosphere, perturbing the reception of GPS signals and communication between Earth and orbiting satellites. Despite decades of space research, the mechanism causing the onset of substorms remains a mystery.

There are three events associated with the onset of a substorm: auroral brightening, current disruption, and magnetic reconnection.

Auroral brightening is a sudden change of the aurora from light grey to very bright and colorful auroras at an altitude of about 100 km, visible from ground. Current disruption occurs at a height of roughly 60 000 km on the nightside or at a sixth of the distance to the Moon and is associated with turbulent fluctuations in the magnetic field.

Magnetic reconnection is the process whereby magnetic field lines from different magnetic domains collide and reconnect, heating and accelerating plasma. It occurs at around a third of the distance to the Moon or at a height of 120 000 km, in a thin plane close to the magnetic equator of the magnetotail.

The difference between the two existing theories on magnetic substorms is that they differ on the order in which the events take place.

Prof Sergeev (St Petersburg State University, Russia) and colleagues from Europe, the USA and China studied three consecutive substorm onsets, from data collected on board Cluster and Double Star on 26 September 2005. For the first time, data indicate that the current disruption process and magnetic reconnection can coincide in space and time showing, possibly, two sides of the same process.

They also found that in this case, magnetic reconnection occurred closer to the Earth than usual, almost co-located with the current disruption process, between 60 000 and 90 000 km. Related localised auroral brightenings were captured few tens of seconds later by an ultra violet imager onboard the NASA’s IMAGE satellite.

“Cluster’s multipoint measurements and the spatial coverage possible together with Double Star have been instrumental in making these unique observations possible,” commented Sergeev.

In February 2007, NASA launched THEMIS, a five-satellite mission dedicated to the study of the onset of substorms. "With the many scientific satellites in orbit, we have a never-before opportunity to study the global solar-magnetospheric environment and the physical processes involved," said Philippe Escoubet, Cluster and Double Star project scientist of the European Space Agency.

Philippe Escoubet | alfa
Further information:
http://www.esa.int/esaSC/SEM3GYMPQ5F_index_0.html

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>