Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics discovers the secrets of Saint Francis

10.09.2007
The tunic believed to have been worn by Saint Francis of Assisi preserved in the Church of Saint Francis in Cortona (Province of Arezzo) dates back to the period in which the saint lived, whereas the tunic preserved in the Church of Santa Croce in Florence was made after his death.

Carbon 14 measurements, which allow a relic to be dated, show that the tunic in Santa Croce dates back to some time between the late 13th century and late 14th century and thus could not have belonged to the “Poor Man of Assisi”, who died in 1226. These and other discovers were made possible through the analysis of the relics with a tandem particle accelerator, which was performed by the Laboratory of Nuclear Techniques for Cultural Heritage (LABEC) of the INFN of Florence.

The results of the study were presented in Florence at the European Conference on Accelerators in Applied Research and Technology (ECAART) and will be published in the volume “L’eredità del Padre: le reliquie di San Francesco a Cortona” (which will be released in a few weeks by Edizioni Messaggero di Sant’Antonio). The volume will include the complete results of an interdisciplinary investigation which included both scientific and humanist research and which was promoted by the Tuscany Province Chapter of the Franciscan Order “Friars Minor Conventual”.

The analyses were conducted with a radiocarbon method, measuring the radiocarbon using Accelerator Mass Spectrometry (AMS). From each tunic, researchers took from 5 to 7 samples of fabric, each of which was smaller than one square centimetre and weighed around 10 milligrams. Multiple samples were taken to avoid doubts or ambiguities (due to, for example, the presence of patches that were added to the tunic at a later time), thus increasing the analysis’ validity.

Each sample of wool was then treated so as to extract only the carbon, obtaining a small graphite pellet weighing about 0.8 milligrams. The pellet was then placed in the accelerator’s chamber, where it was exposed to a beam of cesium ions, “scratching” the pellet’s surface and extracting carbon isotopes 12, 13, and 14. The accelerator used by the INFN separately measured the quantity of the three isotopes. Relics are dated by calculating the ratio of carbon 14 to carbon 12, the quantities of which are “counted” in the accelerator’s detectors. Both great delicacy and exceptional sensitivity are required for taking these measurements; in fact, the ratio of carbon 14 to carbon 12 is only around one to one trillion, or even lower.

The analysis of the tunic preserved in the Basilica of Santa Croce in Florence showed that it dates back to a period between the end of the 1200s and the end of the 1300s, revealing that it was made at least 80 years after Saint Francis’ death and thus could not have belonged to him.

By contrast, the dates of all of the fragments taken from the tunic in the church in Cortona coincide with the period of Saint Francis’ life (the average results show that the tunic was made between 1155 and 1225). The tunic is one of three Franciscan relics, which also include a finely embroidered cushion and a book of gospels believed to have been brought to Cortona by Friar Elia, Saint Francis’ first successor as leader of the order.

LABEC researchers also analysed the composition of the precious metal thread used to embroider the cover of the cushion on which the Saint’s head was placed upon his death, and they used the carbon 14 method to date the fabric of the cushion itself. Moreover, the book of gospels was subjected to in-depth codicological and paleographic investigations by researchers at the University of Siena. Based on both the scientific evidence and humanistic research, the cushion and the book of gospels were also found to date back to the period in which Saint Francis lived.

Working in collaboration with LABEC of the INFN of Florence were the Soprintendenza per i Beni Architettonici e per il Paesaggio, per il Patrimonio Storico, Artistico ed Etnoantropologico of the Arezzo Province, the University of Siena, and the Centro Interdipartimentale di Studi sui Beni Librari e Archivistici of Arezzo.

Eleonora Cossi | alfa
Further information:
http://www.infn.it

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>