Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phoenix Mars Lander Camera Sends First Image Back To Earth

10.09.2007
A camera flying aboard The University of Arizona-led Phoenix Mars Lander took its first picture during cruise and sent it back to Earth on Sept. 6.

The lander's Robotic Arm Camera took the photo looking into the Robotic Arm's scoop. Both instruments are encased in a protective biobarrier to ensure no Earth organisms are carried to Mars.

³It is a nice, clean picture with good sharp focus. One of these days it will be filled with Martian dirt,² said Peter Smith, Phoenix principal investigator at the UA. ³We have special pride in this, as it is a UA-German product.²

The Robotic Arm Camera took an image of the Robotic Arm scoop using its red LED (Light-Emitting Diode) lamp. Human eyes see this image only in shades of gray, so the picture has been enhanced in false color to better represent what the camera sees. The image is online at the Phoenix Mars Lander Website, http://phoenix.lpl.arizona.edu, as well as the UA News Website, http://uanews.org.

Images from the Robotic Arm Camera, one of five imaging instruments on the lander, will be the only pictures taken and returned to Earth until Phoenix approaches and lands on Mars on May 25, 2008. Additional images will be taken by the Robotic Arm Camera later in the cruise stage.

The Robotic Arm Camera check was one of a series of instrument tests being completed as Phoenix cruises toward the red planet. Phoenix was about 57 million miles from Earth when the image was sent back. It is traveling at 76,000 miles per hour in relation to the sun.

On Mars, the Robotic Arm will dig trenches, scoop up soil and water-ice samples and deliver them to several instruments on the lander¹s deck for chemical and geological analysis.

The Robotic Arm Camera, built by the UA and Max Planck Institute, is attached to the Robotic Arm just above the scoop. It will provide close-up, full-color images of the Martian surface, prospective soil and water-ice samples, samples collected in the scoop before delivery to the lander¹s science deck, and of the floor and side walls of the trenches. Phoenix¹s Robotic Arm was provided by the Jet Propulsion Laboratory, and the arm¹s scoop was manufactured by Honeybee Robotics of New York.

Phoenix launched from Cape Canaveral Air Force Station, Fla., on Aug. 4. It will fly to a site farther north than any previous Mars landing.

The solar-powered lander will robotically dig to underground ice and will run laboratory tests assessing whether the site could have ever been hospitable to microbial life. The instruments will also look for clues about the history of the water in the ice. They will monitor arctic weather as northern Mars' summer progresses toward fall, until solar energy fades and the mission ends.

The Phoenix mission is led by Peter Smith of The University of Arizona, Tucson, with project management at NASA¹s Jet Propulsion Laboratory, Pasadena, Calif., and development partnership at Lockheed Martin, Denver.

International contributions are provided by the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus, Denmark; the Max Planck Institute, Germany; and the Finnish Meteorological Institute.

Lori Stiles | University of Arizona
Further information:
http://phoenix.lpl.arizona.edu
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>