Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Blasts Viruses in Blood

06.09.2007
A father-son research team working from separate laboratory benches across the country has discovered a new use for lasers — zapping viruses out of blood. The technique, which holds promise for disinfecting blood for transfusions, uses a low-power laser beam with a pulse lasting just fractions of a second.

Johns Hopkins University student Shaw-Wei David Tsen says it was during a stroll in the park with his father that the idea was born. Tsen, an immunology researcher in the laboratory of T.C. Wu at Hopkins’ Kimmel Cancer Center, sought a new method to rid isolated blood of dangerous pathogens, including the viruses HIV and hepatitis C. He says current techniques using UV irradiation and radioisotopes can leave a trail of mutated or damaged blood components.

Using ultrasonic vibrations to destroy viruses was one possibility, but his father, Kong-Thon Tsen, a laser expert at Arizona State University, had a better idea: Lasers, unlike ultrasound, can penetrate energy-absorbing water surrounding the viruses and directly vibrate the pathogen itself.

The researchers aimed a low-power laser with a pulse lasting 100 femtoseconds (10-13 second) into glass tubes containing saline-diluted viruses that infect bacteria, also known as bacteriophages. The amount of infectious virus within each cube plummeted 100- to 1000-fold after the laser treatment. “I had to repeat the experiment several times to convince myself that the laser worked this well,” says the younger Tsen.

His laser is different from those emitting a continuous beam of visible light. “Our laser repeatedly sends a rapid pulse of light and then relaxes, allowing the solution surrounding the virus to cool off,” Tsen says. “This significantly reduces heat damage to normal blood components.”

Building on the idea that vibration wrecks a virus’ outer shell, the scientists found that their low-power laser selectively destroys viruses and spares normal human cells around them, while stronger beams kill almost everything.

Father and son speculate that laser vibrations could destroy drug-resistant and -sensitive viruses alike.

Wu says that the technique his student developed “could potentially be used to control communicable diseases by giving infusions of laser-treated blood products.”

The scientists published their results in the July 13 issue of the Journal of Physics: Condensed Matter. They will continue their studies using different viruses.

Says Wu, “We believe this work on bacterial viruses is promising, but the real test will be with more serious pathogens like HIV and hepatitis.”

The National Science Foundation funded the research.

Additional collaborators include Chih-Long Chang and Chien-Fu Hung from Johns Hopkins and Juliann G. Kiang from the Uniformed Services University of the Health Sciences.

Valerie Mehl | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.iop.org/EJ/journal/JPhysCM

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>