Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Blasts Viruses in Blood

06.09.2007
A father-son research team working from separate laboratory benches across the country has discovered a new use for lasers — zapping viruses out of blood. The technique, which holds promise for disinfecting blood for transfusions, uses a low-power laser beam with a pulse lasting just fractions of a second.

Johns Hopkins University student Shaw-Wei David Tsen says it was during a stroll in the park with his father that the idea was born. Tsen, an immunology researcher in the laboratory of T.C. Wu at Hopkins’ Kimmel Cancer Center, sought a new method to rid isolated blood of dangerous pathogens, including the viruses HIV and hepatitis C. He says current techniques using UV irradiation and radioisotopes can leave a trail of mutated or damaged blood components.

Using ultrasonic vibrations to destroy viruses was one possibility, but his father, Kong-Thon Tsen, a laser expert at Arizona State University, had a better idea: Lasers, unlike ultrasound, can penetrate energy-absorbing water surrounding the viruses and directly vibrate the pathogen itself.

The researchers aimed a low-power laser with a pulse lasting 100 femtoseconds (10-13 second) into glass tubes containing saline-diluted viruses that infect bacteria, also known as bacteriophages. The amount of infectious virus within each cube plummeted 100- to 1000-fold after the laser treatment. “I had to repeat the experiment several times to convince myself that the laser worked this well,” says the younger Tsen.

His laser is different from those emitting a continuous beam of visible light. “Our laser repeatedly sends a rapid pulse of light and then relaxes, allowing the solution surrounding the virus to cool off,” Tsen says. “This significantly reduces heat damage to normal blood components.”

Building on the idea that vibration wrecks a virus’ outer shell, the scientists found that their low-power laser selectively destroys viruses and spares normal human cells around them, while stronger beams kill almost everything.

Father and son speculate that laser vibrations could destroy drug-resistant and -sensitive viruses alike.

Wu says that the technique his student developed “could potentially be used to control communicable diseases by giving infusions of laser-treated blood products.”

The scientists published their results in the July 13 issue of the Journal of Physics: Condensed Matter. They will continue their studies using different viruses.

Says Wu, “We believe this work on bacterial viruses is promising, but the real test will be with more serious pathogens like HIV and hepatitis.”

The National Science Foundation funded the research.

Additional collaborators include Chih-Long Chang and Chien-Fu Hung from Johns Hopkins and Juliann G. Kiang from the Uniformed Services University of the Health Sciences.

Valerie Mehl | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.iop.org/EJ/journal/JPhysCM

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>