Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum information now readable

08.04.2002


Chalmers researchers in Sweden, in an EU project involving colleagues from France, Holland, Germany, Italy and Finland, have shown that outdata from superconductor quantum computers can be read directly, even though the signal consists only of the presence or absence of two electrons, a so-called Cooper pair.



How far away are we from a functional quantum computer? Research results on quantum computers are beginning to appear. Göran Johansson at the Department of Microelectronics and Nanoscience reports that the Chalmers research team he is a member of has been able to produce readouts of superconductor quantum computers. The key to success lies in being able to meter tiny charges before they move on.

Different research teams are studying different problems involving quantum computers. Research is pursuing many paths at the same time. “But even very simple quantum computers are still at least ten years down the road,” says Göran.


The Chalmers research team, led by Per Delsing, are already the best in the world, together with their colleagues at Yale, when it comes to the rapid metering of charges with the aid of so-called monoelectron transistors. Working with theoreticians from their Chalmers colleague Göran Wendin’s team, they have now shown that it is possible to register a quantum bit rapidly enough to retrieve the information before it is destroyed by the metering itself.

Delsing’s and Wendin’s research teams are part of an EU consortium, SQUBIT, coordinated by Chalmers University of Technology in Sweden. It comprises seven world-class European laboratories and is the world leader, ahead of the U.S. and Japan, for example. The French node at CEA, Saclay, has just presented a superconductor circuit representing a quantum bit with an extremely long lifetime, a world record for this type, and has tremendous potential to expand this into a small basic quantum computer with 5-10 quantum bits within ten years.

“Chalmers has just applied for EU funding to extend our collaboration and to actually build an elementary quantum computer. What’s more, we plan to take part in an even bigger effort within the EU’s seventh framework program in quantum informatics, quantum computers, and nanotechnology,” adds Göran Wendin.

Quantum computers are a new type of computers based on the laws of physics at the atomic level, so-called quantum physics. The principle is the same as that of Schrödinger’s famous cat, which is both dead and alive until you open the lid and check. The bits in a quantum computer are both zero and one, until you read them.

In 1995 a scientist at IBM proved that a quantum computer can factor large numbers into prime numbers exponentially faster than a conventional computer. Since the security of many encryption systems relies on this factoring taking a long time, a functional quantum computer would be able to crack today’s codes in a short period of time. Other more peaceful applications of a quantum computer would be to efficiently simulate large molecules, which would be a great boon to the drug industry.

The difficulty in constructing a quantum computer lies in shielding the bits so that nothing in their environmentan unwanted electron that is oscillating a little too much, for example‘looks’ at them and thus forces them to decide whether they are zeros or ones. This is why these experiments are carried out at extremely low temperatures and using superconductive materials.

Jorun Fahle | alphagalileo

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>