Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum information now readable

08.04.2002


Chalmers researchers in Sweden, in an EU project involving colleagues from France, Holland, Germany, Italy and Finland, have shown that outdata from superconductor quantum computers can be read directly, even though the signal consists only of the presence or absence of two electrons, a so-called Cooper pair.



How far away are we from a functional quantum computer? Research results on quantum computers are beginning to appear. Göran Johansson at the Department of Microelectronics and Nanoscience reports that the Chalmers research team he is a member of has been able to produce readouts of superconductor quantum computers. The key to success lies in being able to meter tiny charges before they move on.

Different research teams are studying different problems involving quantum computers. Research is pursuing many paths at the same time. “But even very simple quantum computers are still at least ten years down the road,” says Göran.


The Chalmers research team, led by Per Delsing, are already the best in the world, together with their colleagues at Yale, when it comes to the rapid metering of charges with the aid of so-called monoelectron transistors. Working with theoreticians from their Chalmers colleague Göran Wendin’s team, they have now shown that it is possible to register a quantum bit rapidly enough to retrieve the information before it is destroyed by the metering itself.

Delsing’s and Wendin’s research teams are part of an EU consortium, SQUBIT, coordinated by Chalmers University of Technology in Sweden. It comprises seven world-class European laboratories and is the world leader, ahead of the U.S. and Japan, for example. The French node at CEA, Saclay, has just presented a superconductor circuit representing a quantum bit with an extremely long lifetime, a world record for this type, and has tremendous potential to expand this into a small basic quantum computer with 5-10 quantum bits within ten years.

“Chalmers has just applied for EU funding to extend our collaboration and to actually build an elementary quantum computer. What’s more, we plan to take part in an even bigger effort within the EU’s seventh framework program in quantum informatics, quantum computers, and nanotechnology,” adds Göran Wendin.

Quantum computers are a new type of computers based on the laws of physics at the atomic level, so-called quantum physics. The principle is the same as that of Schrödinger’s famous cat, which is both dead and alive until you open the lid and check. The bits in a quantum computer are both zero and one, until you read them.

In 1995 a scientist at IBM proved that a quantum computer can factor large numbers into prime numbers exponentially faster than a conventional computer. Since the security of many encryption systems relies on this factoring taking a long time, a functional quantum computer would be able to crack today’s codes in a short period of time. Other more peaceful applications of a quantum computer would be to efficiently simulate large molecules, which would be a great boon to the drug industry.

The difficulty in constructing a quantum computer lies in shielding the bits so that nothing in their environmentan unwanted electron that is oscillating a little too much, for example‘looks’ at them and thus forces them to decide whether they are zeros or ones. This is why these experiments are carried out at extremely low temperatures and using superconductive materials.

Jorun Fahle | alphagalileo

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>