Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stellar Firework in a Whirlwind

04.09.2007
VLT Image of Supernova in Beautiful Spiral Galaxy NGC 1288

Stars do not like to be alone. Indeed, most stars are members of a binary system, in which two stars circle around each other in an apparently never-ending cosmic ballet. But sometimes, things can go wrong. When the dancing stars are too close to each other, one of them can start devouring its partner. If the vampire star is a white dwarf – a burned-out star that was once like our Sun – this greed can lead to a cosmic catastrophe: the white dwarf explodes as a Type Ia supernova.


ESO PR Photo 39/07
SN 2006dr in NGC 1288

In July 2006, ESO’s Very Large Telescope took images of such a stellar firework in the galaxy NGC 1288. The supernova - designated SN 2006dr - was at its peak brightness, shining as bright as the entire galaxy itself, bearing witness to the amount of energy released.

NGC 1288 is a rather spectacular spiral galaxy, seen almost face-on and showing multiple spiral arms pirouetting around the centre. Bearing a strong resemblance to the beautiful spiral galaxy NGC 1232, it is located 200 million light-years away from our home Galaxy, the Milky Way. Two main arms emerge from the central regions and then progressively split into other arms when moving further away. A small bar of stars and gas runs across the centre of the galaxy.

The first images of NGC 1288, obtained during the commissioning period of the FORS instrument on ESO's VLT in 1998, were of such high quality that they have allowed astronomers [1] to carry out a quantitative analysis of the morphology of the galaxy. They found that NGC 1288 is most probably surrounded by a large dark matter halo. The appearance and number of spiral arms are indeed directly related to the amount of dark matter in the galaxy's halo.

The supernova was first spotted by amateur astronomer Berto Monard. On the night of 17 July 2006, Monard used his 30-cm telescope in the suburbs of Pretoria in South Africa and discovered the supernova as an apparent 'new star' close to the centre of NGC 1288, which was then designated SN 2006dr. The supernova reached magnitude 16, that is, it was about 10 000 times fainter than what the unaided eye can see.

Using spectra obtained with the Keck telescope on 26 July 2006, astronomers from the University of California found SN 2006dr to be a Type Ia supernova [2] that expelled material with speeds up to 10 000 km/s.

Notes
[1]: "Morphological structure and colors of NGC 1232 and NGC 1288" by C. Moellenhoff et al., A&A 352, L5 (1999) and "Quantitative interpretation of the morphology of NGC 1288" by B. Fuchs and C, Moellenhoff, A&A 352, L36 (1999)
[2]: Type Ia supernovae are a sub-class of supernovae that were historically classified as not showing the signature of hydrogen in their spectra. They are currently interpreted as the disruption of small, compact stars, called white dwarfs, which acquire matter from a companion star. A white dwarf represents the penultimate stage of a solar-type star. The nuclear reactor in its core has run out of fuel a long time ago and is now inactive. However, at some point the mounting weight of the accumulating material will have increased the pressure inside the white dwarf so much that the nuclear ashes in there will ignite and start burning into even heavier elements. This process very quickly becomes uncontrolled and the entire star is blown to pieces in a dramatic event.

Type Ia supernovae play a very useful role as cosmological distance indicators, allowing astronomers to study the expansion history of our Universe, leading to the conclusion that the Universe is expanding at an accelerating rate (see e.g. ESO PR 21/98).

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2007/pr-39-07.html

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>