Scientists find elusive waves in sun's corona

Scientists for the first time have observed elusive oscillations in the Sun's corona, known as Alfvén waves, that transport energy outward from the surface of the Sun. The discovery is expected to give researchers more insight into the fundamental behavior of solar magnetic fields, eventually leading to a fuller understanding of how the Sun affects Earth and the solar system.

The research, led by Steve Tomczyk of the National Center for Atmospheric Research (NCAR), is being published this week in Science.

“Alfvén waves can provide us with a window into processes that are fundamental to the workings of the Sun and its impacts on Earth,” says Tomczyk, a scientist with NCAR's High Altitude Observatory.

Alfvén waves are fast-moving perturbations that emanate outward from the Sun along magnetic field lines, transporting energy. Although they have been detected in the heliosphere outside the Sun, they have never before been viewed within the corona, which is the outer layer of the Sun's atmosphere. Alfvén waves are difficult to detect partly because, unlike other waves, they do not lead to large-intensity fluctuations in the corona. In addition, their velocity shifts are small and not easily spotted.

“Our observations allowed us to unambiguously identify these oscillations as Alfvén waves,” says coauthor Scott McIntosh of the Southwest Research Institute in Boulder. “The waves are visible all the time and they occur all over the corona, which was initially surprising to us.”

Insights into the Sun

By tracking the speed and direction of the waves, researchers will be able to infer basic properties of the solar atmosphere, such as the density and direction of magnetic fields. The waves may provide answers to questions that have puzzled physicists for generations, such as why the Sun's corona is hundreds of times hotter than its surface.

The research also can help scientists better predict solar storms that spew thousands of tons of magnetized matter into space, sometimes causing geomagnetic storms on Earth that disrupt sensitive telecommunications and power systems. By learning more about solar disruptions, scientists may be able to better protect astronauts from potentially dangerous levels of radiation in space.

“If we want to go to the moon and Mars, people need to know what's going to happen on the Sun,” Tomczyk says.

A powerful instrument

To observe the waves, Tomczyk and his coauthors turned to an instrument developed at NCAR over the last few years. The coronal multichannel polarimeter, or CoMP, uses a telescope at the National Solar Observatory in Sacramento Peak, New Mexico, to gather and analyze light from the corona, which is much dimmer than the Sun itself. It tracks magnetic activity around the entire edge of the Sun and collects data with unusual speed, making a measurement as frequently as every 15 seconds.

The instrument enabled the research team to simultaneously capture intensity, velocity, and polarization images of the solar corona. Those images revealed propagating oscillations that moved in trajectories aligned with magnetic fields, and traveled as fast as nearly 2,500 miles per second.

Media Contact

David Hosansky EurekAlert!

More Information:

http://www.ucar.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors