Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecules line up to make the tiniest of wires

As technology gets smaller and smaller, the computer industry is facing the complex challenge of finding ways to manufacture the minuscule components necessary.

“Computer chips are constantly getting smaller and smaller. There’s an unrelenting decrease in size. And the question arises, how do you wire these things in"” said Dr. Jillian Buriak, University of Alberta professor and senior research officer at the National Institute for Nanotechnology. “If you’re going to make something on the order of 22 or even 18 nanometres, then you’d better have a plug that’s about that size, too.”

A team of NINT researchers, headed by Buriak, has demonstrated an innovative technique for producing very small conductive nano-wires on silicon chips. The process can produce nano-wires that are 5,000 times longer than they are wide. The innovative technique for producing very small conductive nano-wires on silicon chips meets the need for connecting ever-smaller transistors and other electronic components.

“You need very tiny wires to connect everything,” said Buriak. “We’ve figured out a way to use molecules that will self-assemble to form the lines that can be used as wires. Then we use those molecules as templates and fill them up with metal, and then we have the wires that we want. You use the molecules to do the hard work for you.”

In one example, 25 parallel platinum nano-wires were made using this self assembly process, with each wire measuring only 10 nm in width, but extending to a length of 50 microns.

While the idea of wires ‘self-assembling’ sounds like something from science-fiction, it’s a natural process, says Buriak.

“You are the product of self-assembly. The way DNA forms a double helix is self-assembly. It’s just that molecules will recognize each other, bind to each other and then they’ll form structures,” she said. “And the molecules we’re using are actually very simple. They’re just polymers, just plastics that do that naturally.”

While the new process could provide the solution for computer manufacturers looking for ways of increasing the speed and storage capacity of electronics, it could also mean cheaper electronics as well.

“If you have to go and lithographically define one single wire, it’s going to be painstakingly hard and expensive,” said Buriak. “But, if you can have a cheap molecule do it for you, that’s great, that’s going to be much cheaper, use much less energy and be a little more environmentally friendly.”

Ryan Smith | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>