Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New HiRISE views of Mars

30.08.2007
HiRISE Camera Returns New View Of dark Pit On Mars -- And Adds 930 More Images To Nasa Space Mission Archive

The High Resolution Imaging Experiment (HiRISE) has confirmed that a dark pit seen on Mars in an earlier HiRISE image really is a vertical shaft that cuts through lava flow on the flank of the Arsia Mons volcano. Such pits form on similar volcanoes in Hawaii and are called "pit craters."

The HiRISE camera, orbiting the red planet on NASA's Mars Reconnaissance Orbiter, is the most powerful camera ever to orbit another planet. It is operated at The University of Arizona in Tucson. HiRISE Principal Investigator Alfred McEwen of the UA's Lunar and Planetary Laboratory and his team released the new image of the dark pit on Arsia Mons and several other stunning images today on the HiRISE Web site, http://hirise.lpl.arizona.edu. New HiRISE images are released on the site every Wednesday.

The UA-based HiRISE team also released another 930 images to the Planetary Data System (PDS), the U.S. space agency's mission data archive, today.

These images, taken between May and July 2007, include a view of what at first glance looks deceptively like a mesa set in Swiss cheese terrain. But it's a case of "trompe l'oeil," an eye trick -- the feature is a crater.

The "Swiss cheese" terrain is carbon dioxide ice that "sublimates," or thaws from a solid directly into gas, during the summer, which it currently is at this south polar region of Mars. Carbon dioxide sublimating on steep slopes changes the shape of pits and mesas from year to year. The large depression in this image might be an impact crater, McEwen said, although it's hard to be sure because there's no raised rim or ejecta. Impact craters on the ice cap are modified as the ice-rich terrain "relaxes" over time and as they are resurfaced by the annual deposition and sublimation of frost and ice.

Another image shows a very recent "rayed" dark impact crater among older pocks in the lighter, dust-covered surface. An extremely recent impact, perhaps only a few years or decades ago, created the dark spot with radial and concentric patterns in this HiRISE image. The small central crater is only about 18 meters wide (60 feet), but it formed a dark spot 700 meters wide (two-fifths mile) with rays of secondary craters reaching as far as 3.7 kilometers (more than two miles) from the central crater, McEwen said.

Secondary craters are rocks ejected from the central crater. "This region of Mars is covered by dust, and the impact event must have removed or disturbed the dust to create the dark markings," McEwen said.

All HiRISE images released to the PDS can be viewed from the HiRISE site.
There also is a direct link to the full directory listing at http://hirise-pds.lpl.arizona.edu/PDS.

Today's release adds another 1.8 terabytes to the PDS. The project turned over its first 1,200 HiRISE images to PDS last May. The PDS now holds a total 3.5 terabytes of HiRISE data, one of the largest single datasets returned from a spacecraft and archived in NASA's space mission library.

Internet users can explore the images with the user-friendly "IAS Viewer"
software that can be downloaded from the HiRISE Web site. IAS-Viewer technology allows users to quickly explore part of an enormous HiRISE image because the software transmits only as much data as needed to render any selected part of the image on a computer screen. The tool delivers a high-resolution view of the selected part of the image regardless of slow or limited Internet connections.
The HiRISE camera takes images of 3.5-mile wide (6 kilometer) swaths as the orbiter flies at about 7,800 mph between 155 and 196 miles (250 to 316
kilometers) above Mars' surface. HiRISE science imaging began in November
2006 and will continue at least through November 2008.
Information about the Mars Reconnaissance Orbiter spacecraft is online at http://www.nasa.gov/mro. The mission is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Science Mission Directorate, Washington, D.C. Lockheed Martin Space Systems, Denver, is the prime contractor and built the spacecraft.
Ball Aerospace and Technologies Corp., Boulder, Colo., built the HiRISE camera operated by The University of Arizona.

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://hirise.lpl.arizona.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>