Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Now it’s not just Spiderman that can scale the Empire State Building

29.08.2007
Physicists have found the formula for a Spiderman suit. Only recently has man come to understand how spiders and geckos effortlessly scuttle up walls and hang from ceilings but it was doubted that this natural form of adhesion would ever be strong enough to hold the weight of real life Peter Parkers.

Recent research concluded that van der Waals forces – the weak attraction that molecules have for each other when they are brought very close together - are responsible for creepy crawlies’ amazing sticking power. It is the tiny hairs on spiders’ feet that attract to the molecules of surfaces, even glass, and keep them steady.

This discovery however has been taken one step further by research published today, (Thursday, 30 August, 2007), in the Institute of Physics’ Journal of Physics: Condensed Matter to make sticky human suits.

Professor Nicola Pugno, engineer and physicist at Polytechnic of Turin, Italy, has formulated a hierarchy of adhesive forces that will be strong enough to suspend a person’s full body weight against a wall or on a ceiling, while also being easy to detach.

Carbon nanotube-based technology could be used to develop nano-molecular hooks and loops that would function like microscopic Velcro. This detachable, adhesive force could be used in conjunction with van der Waals forces and capillary adhesion.

Pugno said, “There are many interesting applications for our theory, from space exploration and defense, to designing gloves and shoes for window cleaners of big skyscrapers.”

The theory is all the more significant because, as with spiders’ and geckos’ feet, the hooks and hairs are self-cleaning and water-resistant. This means that they will not wear or get clogged by bad weather or dirty surfaces and will be able to withstand some of the harshest habitats on earth, including the deep sea.

Pugno continued, “With the idea for the adhesion now in place, there are a number of other mechanics that need addressing before the Spiderman suit can become a reality. Size-effects on the adhesion strength require further research. Moreover, man’s muscles, for example, are different to those of a gecko. We would suffer great muscle fatigue if we tried to stick to a wall for many hours.

“However now that we are this step closer, it may not be long before we are seeing people climbing up the Empire State Building with nothing but sticky shoes and gloves to support them.”

Charlie Wallace | alfa
Further information:
http://www.iop.org/EJ/journal/JPhysCM

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>