Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photon-transistors for the supercomputers of the future

28.08.2007
Scientist from the Niels Bohr Institute at University of Copenhagen and from Harvard University have worked out a new theory which describe how the necessary transistors for the quantum computers of the future may be created. The research has just been published in the scientific journal Nature Physics.

Researchers dream of quantum computers. Incredibly fast super computers which can solve such extremely complicated tasks that it will revolutionise the application possibilities. But there are some serious difficulties. One of them is the transistors, which are the systems that process the signals.

Today the signal is an electrical current. For a quantum computer the signal can be an optical one, and it works using a single photon which is the smallest component of light.

“To work, the photons have to meet and “talk”, and the photons very rarely interact together” says Anders Søndberg Sørensen who is a Quantum Physicist at the Niels Bohr Institute at Copenhagen University. He explains that light does not function like in Star Wars, where the people fight with light sabres and can cross swords with the light. That is pure fiction and can’t happen. When two rays of light meet and cross, the two lights go right through each other. That is called linear optics.

What he wants to do with the light is non-linear optics. That means that the photons in the light collide with each other and can affect each other. This is very difficult to do in practice. Photons are so small that one could never hit one with the other. Unless one can control them – and it is this Anders Sørensen has developed a theory about.

Light collisions at the quantum level

Instead of shooting two photons at each other from different directions and trying to get them to hit each other, he wants to use an atom as an intermediary. The atom can only absorb one photon (such are the laws of physics). If you now direct two photons towards the atom it happens that they will collide on the atom. It is exactly what he wants.

The atom is however very small and difficult to hit. So the photons have to be focussed very precisely. In a previous experiment researchers had discovered that microwaves could be focussed on an atom via a superconducting nano-wire. They got the idea that the same could happen with visible light.

The theoretical model shows that it works. The atom is brought close to the nanowire. Two photons are sent towards the atom and when they hit it an interaction occurs between them, where one imparts information to the other. The information is sent in bits which are either a one or zero digit, and the order of digits produces the message. (Today we can send information via an optic cable and each bit is made up of millions of photons.) In quantum optics each bit is just one photon. The photon has now received its message and the signal continues on its way. It is a step on the way to building a photon-transistor for a quantum computer.

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>