Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quantum light beams good for fast technology

Australian and French scientists have made another breakthrough in the technology that will drive next generation computers and teleportation.

The researchers have successfully superposed light beams, which produces a state that appears to be both on and off at once.

Light beams that are simultaneously on and off are vital for the next-generation super computers which should be faster than current computers based on bits, that are either on or off.

Previously, only smaller light particles had been superposed and the group has also proved a quantum physics theory known as Schrödinger's cat.

This theory, named after an Austrian physicist Erwin Schrödinger, proposed that a large object such as a cat could be simultaneously alive and dead.

Researchers from The University of Queensland and University of Paris South have published the latest breakthrough in the international journal NATURE.

UQ Centre for Quantum Computer Technology researcher Dr Hyunseok Jeong devised the scheme to generate and superpose the beams which was tested and proved by his French collaborators.

Dr Jeong said his group used special lasers, crystals, photon detectors, half-mirrors and other optical devices to generate and measure the superposition of light beams.

“It has been known to be extremely hard to generate Schrödinger cat states, particularly with traveling light,” Dr Jeong said.

“Even though one could generate such Schrodinger cat states, it would be extremely hard to observe them because in a very short time, they would be reduced to either alive or dead states.”

He said his group's research findings would help speed up the development of quantum information technologies such as quantum computers, quantum cryptography and quantum teleportation.

“Using Schrödinger cat states, quantum teleportation may be performed with nearly 100 percent success probability.”

Dr. Jeong | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>