Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ground-breaking anti-landmine radar

24.08.2007
Researchers in The Netherlands are developing a radar system that might one day see through solid earth and could be used to clear conflict zones of landmines, safely and at low cost.

Writing in Inderscience's Journal of Design Research, the team explains how the new technology, with further industrial development, could eventually make vast tracts of land around the globe safe once more.

Landmines were first used widely during World War II and continue to represent a significant threat to life and limb in areas afflicted by war. Originally, landmines were used to protect strategic areas such as borders, camps or important bridges and to restrict the movement of enemy forces. The use of landmines has spread to countless national conflicts and they are now commonly used by terrorist and other organisations against civilians and rivals. This has led to a major proliferation of landmines in many areas beyond conventional military conflict zones.

In the absence of records, the low cost of landmines and the vast areas that have been polluted with them due to aerial distribution, clearing landmines has become and increasingly frustrating and hazardous task.

A single landmine might cost $1, but once in the ground locating it and making it safe can cost up to $1000. According to P. van Genderen and A.G. Yarovoy in the Faculty of Electrical Engineering at Delft University of Technology, this cost is prohibitive in most areas affected by landmine use and so a cheaper solution is needed. The researchers also point out that a detection system that does not distinguish between landmines and other buried objects is not viable.

The researchers explain that innovative technologies such as multi-hyper spectral sensors, passive millimetre wave detectors, and charged particle detection could be effective, but are likely to be very costly and complicated to use. Inexpensive methods such as conventional metal detectors and probing of the ground by a human operator are prone to serious error with major repercussions for the operators.

They have now turned to ultra-wideband radar as having the potential to be much easier to operate than the sophisticated technology but be just as effective and crucially far less expensive. The team has now developed a prototype system that successfully detects model landmines in a test environment. The detection rate is always offset by the false alarm rate, the researchers explain. The real step forward can be made if this balance can be made more favourable. Further work and development is now needed to shift the balance between detection rate and false alarm rate.

Jim Corlett | alfa
Further information:
http://www.inderscience.com/link.php?id=14882

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>