Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


AKARI’s observations of asteroid Itokawa

The space-borne infrared observatory AKARI, observed asteroid Itokawa last month with its Infrared Camera. The data will be used to refine estimates of sizes of potentially hazardous asteroids in the future.

The data collected by AKARI, a JAXA mission with ESA participation, complements that from JAXA’s asteroid explorer Hayabusa in late April this year.

As AKARI observed Itokawa on 26 July it was in the constellation of Scorpius, and was about 19 magnitudes bright in visible light. The asteroid and Earth were closest to each other, at a distance of about 42 million km (for comparison, Earth is 150 million km from the Sun). Given how close it was, Itokawa moved a significant distance on the sky over the short observing time.

Using observational data of asteroids such as Itokawa in combination with data from the explorer, models that estimate asteroid sizes can be made more accurate. This is especially useful for estimating the size of potentially hazardous asteroids which may be discovered in the future.

Before Hayabusa arrived at Itokawa, many observations to determine the asteroid's approximate size had already been attempted. Among the many different methods of measurement, the most accurate estimate was achieved by mid-infrared observations.

Motion of Itokawa

With AKARI, it was possible to observe Itokawa at several different wavelengths in the mid-infrared range, obtaining a much more comprehensive set of data. This data is very important, not only for the study of the asteroid’s infrared properties, but also for use as a template and source of comparison with other asteroids, to improve the estimates of their sizes.

Most sunlight falling on Itokawa is absorbed, heating the asteroid up. It then re-emits this energy as bright infrared light, which was in turn observed by AKARI. Only a small fraction of the incident sunlight is reflected from Itokawa, making it a very faint object when observed in visible light. It is very hard to observe using telescopes of sizes similar to that of AKARI from ground.

Positions of Itokawa and Earth

Asteroid size is one of the most sought-after pieces of information. For asteroids that are not explored directly, their sizes can be estimated based on various observations from Earth. The temperature of asteroids is determined by the balance between the energy input from incident sunlight, and the output, emitted as infrared radiation.

Existing computer models estimate the temperature distribution in asteroids by considering their shape, rotational motion, and surface conditions.

Observational data in the mid-infrared gives information on the infrared light emitted by the asteroid. Asteroid size can be derived by comparing observational data in the mid-infrared, with that expected from the calculations of the model. The models can further be improved by using the infrared observational data of well-studied asteroids, such as Itokawa.

AKARI has also made observations of possible candidates for future asteroid exploration. It is expected that this detailed information will help greatly further our knowledge of these interesting relics of our Solar System.

Karina De Castris | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>