Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Calculating the biomass of Martian soil

A new interpretation of data from NASA’s Viking landers indicates that 0.1% of the Martian soil tested could have a biological origin.

Dr Joop Houtkooper of the University of Giessen, Germany, believes that the subfreezing, arid Martian surface could be home to organisms whose cells are filled with a mixture of hydrogen peroxide and water. In a presentation at the European Planetary Science Congress in Potsdam on Friday 24th August, Dr Houtkooper will describe how he has used data from the Gas Exchange (GEx) experiment, carried by NASA’s Viking landers, to estimate the biomass in the Martian soil.

Dr Houtkooper said, “The GEx experiment measured unexplained rises in oxygen and carbon dioxide levels when incubating samples. If we assume these gases were produced during the breakdown of organic material together with hydrogen peroxide solution, we can calculate the masses needed to produce the volume of gas measured. From that, we can estimate the total biomass in the sample of Martian soil. It comes out at little more than one part per thousand by weight, comparable to what is found in some permafrost in Antarctica. This might be detectable by instruments on the Phoenix lander, which will arrive at Mars in May next year.”

Dr Houtkooper and his colleague, Dr Schulze-Makuch from Washington State University, suggest that a hydrogen peroxide-water based organism would be quite capable of surviving in the harsh Martian climate where temperatures rarely rise above freezing and can reach -150 degrees Celsius at the poles. A 60% solution of hydrogen peroxide has a freezing point of -56.5 degrees Celsius, and the supercooling properties of such mixtures could mean that metabolic activity could survive at even lower temperatures. In addition, hydrogen peroxide-water solutions tend to attract water, which means that organisms could scavenge water molecules from the Martian atmosphere.

The downside of the water-scavenging biochemistry is that if the organisms were exposed to liquid water or warm atmospheres with high humidity, they could die through over hydration. In this case, the cell would break down, releasing oxygen. Any organic compounds could then react with the hydrogen peroxide, releasing carbon dioxide, water vapour and traces of nitrogen and minor constituents.

Dr Houtkooper said, “This hydrogen peroxide-water hypothesis could provide answers for several aspects of the Viking results that remain unexplained thirty years on. The concept of this type of life is also interesting for planners of future missions searching for life on Mars. With the long timescales involved in planning and launching Mars landers, there is a dire necessity to anticipate what kind of life we should expect to find and where we should be looking. Organisms with the hydrogen peroxide-water biochemistry would be more likely to be active in colder areas on Mars with high water vapour concentrations, as would be expected along the polar ice fringe. Looking further ahead, a sample return mission would mean that we could use all that present technology affords to analyse signs of life. However, if the organisms were to have the chemistry we are proposing, they may well decompose completely into gases during the journey back to Earth, without leaving even a smudge behind.”

The existence of organisms with the hydrogen peroxide-water chemistry would raise interesting questions about the origins of life on Earth. Dr Houtkooper does not think that it would necessarily imply independent origins for terrestrial and Martian life. “A detailed study of the biochemistry and genetics would be needed to determine whether the life forms were related. The transfer of terrestrial organisms to Mars or vice versa is a possibility given favorable conditions for the origin and persistence of life on both planets early in solar system history. The transfer of terrestrial organisms by early spacecrafts to Mars that either landed or crashed is a possibility, but it is not plausible that these organisms evolved in a few years.“

Hydrogen peroxide is not unknown in the metabolic processes of terrestrial organisms. The Bombardier beetle, Brachinus Crepitans, uses a 25% solution of hydrogen peroxide to produce a steam explosion in the face of pursuing predators.

Dr Houtkooper said, “There does not appear to be any basic reason why hydrogen peroxide could not be used by living systems. While organisms on Earth have found it advantageous to include salt in their intracellular fluids, hydrogen peroxide may have been more suitable for organisms adapting to the cold, dry environment of Mars.”

Anita Heward | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Physicists made crystal lattice from polaritons
20.03.2018 | ITMO University

nachricht Mars' oceans formed early, possibly aided by massive volcanic eruptions
20.03.2018 | University of California - Berkeley

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>