Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculating the biomass of Martian soil

24.08.2007
A new interpretation of data from NASA’s Viking landers indicates that 0.1% of the Martian soil tested could have a biological origin.

Dr Joop Houtkooper of the University of Giessen, Germany, believes that the subfreezing, arid Martian surface could be home to organisms whose cells are filled with a mixture of hydrogen peroxide and water. In a presentation at the European Planetary Science Congress in Potsdam on Friday 24th August, Dr Houtkooper will describe how he has used data from the Gas Exchange (GEx) experiment, carried by NASA’s Viking landers, to estimate the biomass in the Martian soil.

Dr Houtkooper said, “The GEx experiment measured unexplained rises in oxygen and carbon dioxide levels when incubating samples. If we assume these gases were produced during the breakdown of organic material together with hydrogen peroxide solution, we can calculate the masses needed to produce the volume of gas measured. From that, we can estimate the total biomass in the sample of Martian soil. It comes out at little more than one part per thousand by weight, comparable to what is found in some permafrost in Antarctica. This might be detectable by instruments on the Phoenix lander, which will arrive at Mars in May next year.”

Dr Houtkooper and his colleague, Dr Schulze-Makuch from Washington State University, suggest that a hydrogen peroxide-water based organism would be quite capable of surviving in the harsh Martian climate where temperatures rarely rise above freezing and can reach -150 degrees Celsius at the poles. A 60% solution of hydrogen peroxide has a freezing point of -56.5 degrees Celsius, and the supercooling properties of such mixtures could mean that metabolic activity could survive at even lower temperatures. In addition, hydrogen peroxide-water solutions tend to attract water, which means that organisms could scavenge water molecules from the Martian atmosphere.

The downside of the water-scavenging biochemistry is that if the organisms were exposed to liquid water or warm atmospheres with high humidity, they could die through over hydration. In this case, the cell would break down, releasing oxygen. Any organic compounds could then react with the hydrogen peroxide, releasing carbon dioxide, water vapour and traces of nitrogen and minor constituents.

Dr Houtkooper said, “This hydrogen peroxide-water hypothesis could provide answers for several aspects of the Viking results that remain unexplained thirty years on. The concept of this type of life is also interesting for planners of future missions searching for life on Mars. With the long timescales involved in planning and launching Mars landers, there is a dire necessity to anticipate what kind of life we should expect to find and where we should be looking. Organisms with the hydrogen peroxide-water biochemistry would be more likely to be active in colder areas on Mars with high water vapour concentrations, as would be expected along the polar ice fringe. Looking further ahead, a sample return mission would mean that we could use all that present technology affords to analyse signs of life. However, if the organisms were to have the chemistry we are proposing, they may well decompose completely into gases during the journey back to Earth, without leaving even a smudge behind.”

The existence of organisms with the hydrogen peroxide-water chemistry would raise interesting questions about the origins of life on Earth. Dr Houtkooper does not think that it would necessarily imply independent origins for terrestrial and Martian life. “A detailed study of the biochemistry and genetics would be needed to determine whether the life forms were related. The transfer of terrestrial organisms to Mars or vice versa is a possibility given favorable conditions for the origin and persistence of life on both planets early in solar system history. The transfer of terrestrial organisms by early spacecrafts to Mars that either landed or crashed is a possibility, but it is not plausible that these organisms evolved in a few years.“

Hydrogen peroxide is not unknown in the metabolic processes of terrestrial organisms. The Bombardier beetle, Brachinus Crepitans, uses a 25% solution of hydrogen peroxide to produce a steam explosion in the face of pursuing predators.

Dr Houtkooper said, “There does not appear to be any basic reason why hydrogen peroxide could not be used by living systems. While organisms on Earth have found it advantageous to include salt in their intracellular fluids, hydrogen peroxide may have been more suitable for organisms adapting to the cold, dry environment of Mars.”

Anita Heward | alfa
Further information:
http://nssdc.gsfc.nasa.gov/planetary/viking.html

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>