Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

60-second test could help early diagnosis of common brain diseases

23.08.2007
Until recently physicians have had to rely on time-consuming and uncertain behavioural examinations to diagnose the onset of brain diseases such as multiple sclerosis, Alzheimer's and schizophrenia.

Research published next week in the Institute of Physics' Journal of Neural Engineering suggests that we could soon be able to diagnose the onset of many brain diseases by analysing the tiny magnetic fields produced by neuron activity in the brain.

This is a significant breakthrough for neurologists and psychiatrists as it could present a fast and simple screening test for brain diseases, while also helping differentiate between different brain diseases that have similar symptoms.

A team of investigators from the University of Minnesota Medical School in Minneapolis, US, led by Professor Apostolos P. Georgopoulos, has been analysing the magnetic charges released when neuronal populations in our brains 'couple'. By comparing the patterns of tiny magnetic charges in healthy brains to those afflicted with common diseases such as Alzheimer's, the team has been able to identify the patterns commonly associated with these debilitating diseases.

A process called magnetoencephalography (MEG), a non-invasive measurement of magnetic fields in the brain, has been used to examine a total of 142 volunteers during tests which last between 45-60 seconds. The team first studied 52 volunteers to find patterns of neural activity that could identify all the different illnesses.

They then tested a further 46 patients to see whether the patterns found from the first group could accurately diagnose disease within a second group. Here, many of the predictors found from the first set of participants also correctly diagnosed more than 90% of subjects in the second sample.

Professor Georgopoulos said, "We want to continue and acquire data from a large number of subjects - patients and matched controls. The throughput of this MEG test is large so we can continue a high rate of testing and we hope that clinical applications can become a reality in a year or two."

Diagnosing illnesses like Alzheimer's has always been very difficult, particularly in the early stages. Physicians are forced to rely on conversations with patients, memory tests, physical examinations and, occasionally, brain scans. It is sometimes not until post-mortem or after a biopsy that cause of illness can be confirmed.

Charlie Wallace | alfa
Further information:
http://www.medicalphysicsweb.org

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>