Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Flares from far side of the Sun affect space weather of the inner planets

Observations of solar flares by spacecraft at Mars, Venus and the Earth show that eruptions on the far side of the Sun may affect our “space weather” back on Earth.

In December 2006, a series of solar flares produced in a single active region were observed from three different points, each approximately 120 degrees apart. The results of these observations are now presented at the European Planetary Sciences Congress, Potsdam, on Thursday 23rd August by a team of scientists from the Swedish Institute of Space Physics.

Although solar flares and solar energetic particles (SEP) have been reported many times based on Earth-orbiting satellites or other planetary spacecraft, this time scientists achieved simultaneous plasma observations using instruments aboard Mars Express, Venus Express , the SOHO solar orbiter and a GOES environmental satellite, which is in geostationary orbit around the Earth.

“These observations indicate that flare activities on the far side of the Sun may affect terrestrial space weather as a result of travelling more than 90° in both azimuthal directions in the heliosphere”, said Dr Yoshifumi Futaana, one of the investigators in this study.

Another important consequence of the analysis of SEP events is the insight they can provide into the process of planetary atmospheric evolution. During the December 2006 event, Mars Express observed an enhancement of ion (oxygen) outflow flux from the Martian atmosphere. This is the first observation of this kind and suggests that the solar extreme ultraviolet flux levels significantly affect the atmospheric loss from unmagnetized planets.

Dr Futaana explained, “This is of interest for planetary scientists because the ion outflow should play an important role on the evolution of planetary atmosphere if the flux is integrated over a geological time scale (billions of years)”.

This violent solar flare event also gives us a hint to solve a mystery of missing water on Mars. Mars is believed to have possessed a large amount of water approximately 3.5-4.0 billion years ago. However, no one knows where the water has gone now. One plausible idea is that the water has escaped to space, in the evolution of the planet’s atmosphere. One of the main scientific aims of Mars Express is to measure exactly how much of this water has been lost to space.

Anita Heward | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>