Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Princeton scientists confirm long-held theory about source of sunshine

22.08.2007
Scientists are a step closer to understanding sunshine. A monumental experiment buried deep beneath the mountains of Italy has provided Princeton physicists with a clearer understanding of the sun's heart -- and of a mysterious class of subatomic particles born there.

The researchers, working as part of an international collaboration at the underground Gran Sasso National Laboratory near L'Aquila, Italy, have made the first real-time observation of low-energy solar neutrinos, which are fundamental particles created by nuclear reactions that stream in vast numbers from the sun's core.

"Our observations essentially confirm that we understand how the sun shines," said Frank Calaprice, a professor of physics and principal investigator of the Princeton team. "Physicists have had theories regarding the nuclear reactions within the sun for years, but direct observations have remained elusive. Now we understand these reactions much better."

The scientists' precise measurements of the neutrinos' energy provide long-sought proof of the theory regarding how these neutrinos are produced.

In stars the size of the sun, most solar energy is produced by a complex chain of nuclear reactions that converts hydrogen into helium. Beginning with protons from hydrogen's nucleus, the chain takes one of several routes that all end with the creation of a helium nucleus and the production of sunlight.

Steps along two of these routes require the presence of the element beryllium, and physicists have theorized that these steps are responsible for creating about 10 percent of the sun's neutrinos. But technological limitations had made the theory difficult to test until now.

The Gran Sasso lab's giant Borexino detector, located more than a kilometer below the Earth's surface, overcame these limitations, permitting the team to observe low-energy neutrinos, which interact extremely rarely with other forms of matter. Scientists have desired a way to detect them, because they emerge largely unchanged from their journey through the sun's interior to the Earth -- offering an unsullied glimpse into the processes that forged them. Most particles that emerge from the sun take so long to escape the interior that they change drastically before scientists can study them, so it has been difficult to prove how the sun creates energy. Neutrinos provide a key because they escape before they have time to change.

"The findings show that science's understanding of the chain of nuclear processes that make the sun shine is essentially correct, as least as far as the part of the chain that involves beryllium is concerned," Calaprice said. "The reaction does not generate a large percentage of the sun's energy, but confirming that we understand it makes us more certain that we know how the other processes that create sunlight work."

The results address other longstanding questions as well. The highly sensitive detector has confirmed theories regarding why previous experiments had found fewer solar neutrinos than expected at higher energies, a problem that stemmed from the particles' odd capacity to oscillate from one form to another as they travel through space. While the sun only produces electron neutrinos, these can change into tau or muon neutrinos, which have proved more difficult to detect.

Observing lower-energy neutrinos may also help physicists understand other predicted effects of neutrino oscillation that have not yet been tested.

"This experiment is an important step along the way toward understanding the details of neutrino physics using neutrinos from the sun," said physicist Morgan Wascko, co-spokesman for SciBooNE neutrino experiment at Fermi National Accelerator Laboratory. "Using these particles to observe the sun is important because they give us a lot of information about the way the universe functions, because it's full of stars."

The Borexino experiment's entire research team, which includes more than 100 scientists from many institutions worldwide, will publish its findings in an upcoming edition of the scientific journal Physics Letters B. Calaprice's Princeton colleagues include Cristiano Galbiati, assistant professor of physics, and Jay Benziger, professor of chemical engineering.

The experiment is funded by the National Science Foundation.

Abstract:
First real time detection of 7Be solar neutrinos by Borexino
This paper reports a direct measurement of the 7Be solar neutrino signal rate performed with the Borexino low background liquid scintillator detector. This is the first real-time spectral measurement of sub-MeV solar neutrinos. The result for 0.862 MeV 7Be is 47 ± 7stat ± 12sys counts/(day · 100 ton), consistent with predictions of Standard Solar Models and neutrino oscillations with LMA-MSW parameters.

Chad Boutin | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>