Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Possible closest neutron star to Earth found

Using NASA's Swift satellite, McGill University and Penn State University astronomers have identified an object that is likely one of the closest neutron stars to Earth -- and possibly the closest.

The object, located in the constellation Ursa Minor, is nicknamed Calvera, after the villain in the movie "The Magnificent Seven." If confirmed, it would be only the eighth known "isolated neutron star" -- meaning a neutron star that does not have an associated supernova remnant, binary companion, or radio pulsations.

"The seven previously known isolated neutron stars are known collectively as 'The Magnificent Seven' within the community and so the name Calvera is a bit of an inside joke on our part," says co-discoverer Derek Fox of Penn State. A paper describing the research will be published in the Astrophysical Journal.

First author Robert Rutledge of McGill University in Montreal, Quebec, originally called attention to the source. He compared a catalog of 18,000 X-ray sources from the German-American ROSAT satellite, which operated from 1990 to 1999, with catalogs of objects that appear in visible light, infrared light, and radio waves. He realized that the ROSAT source known as 1RXS J141256.0+792204 did not appear to have a counterpart at any other wavelength.

The group aimed Swift at the object in August 2006. Swift's X-ray Telescope showed that the source was still there, and emitting about the same amount of X-ray energy as it had during the ROSAT era. The Swift observations enabled the group to pinpoint the object's position more accurately, and showed that it was not associated with any known object.

"The Swift observation of this source is what got the show going," says paper coauthor and Penn State undergraduate Andrew Shevchuk. "As soon as I saw the data, I knew Calvera was a great neutron-star candidate."

The team next targeted Calvera with the 8.1-meter Gemini North Telescope in Hawaii. These observations, along with a short observation by NASA's Chandra X-ray Observatory, showed that the object is not associated with any optical counterpart down to a very faint magnitude. Chandra's sharper X-ray vision sees the object as point-like, consistent with the neutron-star interpretation.

According to Rutledge, there are no widely accepted alternate theories for objects like Calvera that are bright in X-rays and faint in visible light. Exactly which type of neutron star it is, however, remains a mystery. As Rutledge says, "Either Calvera is an unusual example of a known type of neutron star, or it is some new type of neutron star, the first of its kind."

Calvera's location high above the plane of our Milky Way Galaxy is part of its mystery. In all likelihood, the neutron star is the remnant of a star that lived in our galaxy's starry disk before exploding as a supernova. In order to reach its current position, it had to wander some distance out of the disk. But exactly how far" "The best guess is that it is still close to its birthplace, and therefore close to Earth," says Rutledge. If this interpretation is correct, the object is 250 to 1,000 light-years away. This would make Calvera one of the closest known neutron stars -- possibly the closest.

"Because it is so bright, and probably close to Earth, it is a promising target for many types of observations," says Fox. Indeed, to clear up the mysteries surrounding Calvera the team will be taking a longer observation with Chandra to see if the source pulsates in X-rays, and to measure its spectrum. They also joined a group using a radio telescope to search for radio pulsations, which were not seen.

Calvera could represent the tip of the iceberg for isolated neutron stars. "There could easily be dozens," says Fox. "The key point is that until our Swift survey, no one was able to refine the X-ray positions of large numbers of ROSAT sources to the point where it became clear which ROSAT sources were 'missing' their optical counterparts."

Barbara K. Kennedy | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>