Lumpy, bumpy, fluffy and layered: a picture of Rosetta's target comet builds up

Observations of the comet using the 8.2 m-ESO Very Large Telescope (VLT) show an irregularly-shaped object that is about 4.6 kilometres in diameter with a rotational period of 12 hours 49 minutes. Ms Cecilia Tubiana, who will be presenting results at the second European Planetary Science Congress

(EPSC) in Potsdam on Tuesday 21st August, said, “These observations were taken when the comet was approaching the furthest point from the Sun in its orbit. Rosetta will rendezvous with the comet in 2014 at a distance of about 600 million kilometres from the Sun. While a quite detailed portrait of the comet at small heliocentric distance has been drawn, a profound description of Rosetta’s target comet at large heliocentric distance is missing.”

A team of scientists, led by the Max Planck Institute for Solar System Research, observed the comet’s nucleus in June 2004, May and August 2006 and July 2007, when the comet was at least 680 million kilometres from the Sun.
Surprisingly, although the comet was not active, they found that a faint dust trail is visible in the images of the comet, extending more than 500 000 km along the comet’s orbital path. Ms Tubiana said, “We believe that this dust trail is composed of large grains that the comet shed over the

many times it has travelled along this path.

Later on Tuesday 21st at the EPSC, Dr Jérémie Lasue, of the Service d’aéronomie in France, will present results of numerical studies that describe how a comet’s nucleus changes as it travels along its orbital path.
Dr Lasue explained, ”Comets constantly evolve by ejecting material as their distance from the Sun changes and their temperature increases or falls. To land on a comet’s nucleus, you need to have a good idea of its structure, density and tensile strength. Comet 67P/Churyumov-Gerasimenko most probably has an irregular comet nucleus with crater-like depressions on its surface.

Our team has developed a three-dimensional model of the internal processes in the nucleus, allowing us to predict the thermal evolution and surface activity as the comet moves along its orbit”

Recent mission results suggest that a comet’s structure is highly stratified. Dr Lasue said, “Stardust showed that the dust ejected from the outer layers is composed of fluffy particles that can be relatively large.

These particles are rich in silicates and organics, which are the building blocks of life. Our simulations, for the first time, take into account the relationship between the impact history of the comet and the forces holding the comet’s constituents together. This technique has enabled us to reproduce and interpret the amazing layered structure and surface features that Deep Impact observed at comet 9P/Tempel 1. This is a new means to quantify the tensile strength of comet nuclei, which gives us vital information in preparing for Rosetta’s rendezvous with 67P/Churyumov-Gerasimenko.”

The teams of scientists from France and Italy in which Dr Lasue works, are developing these numerical tools to support two of Rosetta’s instruments:

VIRTIS, which will determine the composition of the ices in the comet’s nucleus as well as emitted gases and dust, and CONSERT, which will investigate the deep interior of the nucleus with radio waves.

Media Contact

Anita Heward alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors