Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ExoMars exhibits self-control in sampling Mars terrain

20.08.2007
Autonomous systems developed for ESA’s ExoMars rover, which will allow it to analyse Martian terrain and identify the best point on rocks to drill for samples without need for human intervention, could treble the speed in which the rover can collect a sample, compared to previous Mars rovers.
In simulations, now being backed up by laboratory tests in the “Mars Yard”
at the University of Wales, Aberystwyth, the rover first builds up a three-dimensional model of its surroundings and then analyses each rock for surfaces suitable for drilling. The rover can then calculate the adjustments needed to position its chassis, robotic arm and instruments to acquire the sample.

Dr Dave Barnes, who is presenting results at the European Planetary Science Congress in Potsdam on Monday 20th August, said, “This system allows the rover to do more than find nice flat areas to drill. The versatility of our system and its ability to pinpoint the best site to take samples, even from complex micro-features on rocks, could be vital when looking for evidence of exobiology.”

In recent Mars missions, up to 40% of operations time has been taken up with defining, planning, rehearsing, scheduling and uploading every move that the rover makes on the surface of Mars. For NASA’s Mars Exploration Rovers, three Martian days can elapse between a target being identified and the rover actually acquiring the sample. The autonomous systems developed by the Aberystwyth team should bring that time for ExoMars down to less than one Martian day.

Software developed by the team, who worked with EADS Astrium on the Phase A study for ExoMars, uses stereo images to build up a digital elevation model and to classify features into six categories: peaks, ridges, passes, planes, channels and pits. The level of detail for each feature can be varied by adjusting the number or data points, the slope and the minimum curvature for the model. The rover selects a suitable surface, then ‘tags’ the optimum drilling point and calculates how to move the instruments at the end of its robotic arm into position.

Dr Barnes said “We are now starting an exciting experimental phase of study with our Concept-E rover chassis model, which has six wheels that can drive, turn and move up and down independently. This gives us eighteen degrees of freedom when adjusting the pitch, roll and yaw of the chassis. We are working on a unified control system for the chassis and the robotic arm, which itself has four degrees of freedom, so the rover can manoeuvre itself to access samples even in hard to reach places. This puts us at a new level of manoeuvrability compared to Mars landers that have flown to date. ”

The Concept-E rover will be operated on the newly completed Planetary Analogue Terrain (PAT) at Aberystwyth, a 50 metre squared sculpted landscape, complete with a drilling pit, covered with soil and rocks that have been selected for their Mars-like properties. Dr Barnes said, “The majority of our work to date has been in simulation but there is no substitute for experiments with real hardware. We are looking forward to repeating our experiments with a real rover and instruments in our new PAT laboratory.”

FURTHER INFORMATION

ExoMars
ExoMars, which is scheduled to launch in 2013, is the first mission in the European Space Agency’s Aurora programme to explore Mars and the Moon. It will search for traces of past and present life on Mars and gather information the Martian environment in preparation for future missions.

The ExoMars rover will carry a comprehensive suite of instruments dedicated to exobiology research. The rover will be able to travel several kilometres during its nominal lifetime of 6 months and analyse samples from with in surface rocks and from the subsurface, down to a depth of 2 metres.

For further information see:
http://www.esa.int/SPECIALS/Aurora/SEM1NVZKQAD_0.html
University of Wales Aberystwyth
The University of Wales, Aberystwyth (UWA) has been a member of the ESA Mars Express consortium since before the spacecraft's launch in 2003. UWA’s major involvement focused upon the Beagle 2 lander and responsibilities included creating a suite of calibrated 3D software based simulation tools for Beagle 2. More recently, UWA has become a key member of the international teams for both the European Space Agency (ESA) ExoMars Rover, and the ESA ExoMars Panoramic Camera instrument.

UWA responsibilities include advanced software based rover/arm simulation and visualisation tools, PanCam image data processing and 3D terrain modelling, rover/robot-arm/PanCam calibration, and the development of new techniques for autonomous rover/arm science sample acquisition.

Planetary Analogue Terrain (PAT)
An award of £0.25M from the UK Higher Education Funding Council Wales has enabled the creation of a new Planetary Analogue Terrain (PAT) Laboratory at the University of Wales, Aberystwyth. The aim of the PAT Lab. is to perform comprehensive mission operations emulation experiments. These trials and experiments are essential when learning how deploy science instruments for a given mission using a robot, and hence maximise quality scientific data return. Work has resulted in a unique facility that has a terrain region composed of Mars Soil Simulant-D (from the German Space Agency - DLR). It includes ‘science target’ rocks that have been fully characterised, and donated to the project by the UK Planetary Analogue Field Studies network (PAFS-net). These rocks have been characterised independently, hence results can be compared with those generated using the PAT Lab. robots. The terrain also has an area for sub-surface sampling. The total floor area of the PAT Lab. is 100 m2, and half of this is dedicated to the terrain region.

Anita Heward | alfa
Further information:
http://www.europlanet-eu.org/index.php?option=com_content&task=view&id=100&I

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>