Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU physicist takes a trip to nuclear 'island of inversion'

13.08.2007
Far from the everyday world occupied by such common elements such as gold and lead lies a little-understood realm inhabited by radioactive, or unstable, elements.

Recently, a nuclear physicist from Florida State University collaborated with other scientists from the United States, Japan and England in an experiment that illustrated how the “normal” rules of physics don’t apply for some of these radioactive elements.

Kirby W. Kemper, the Robert O. Lawton Distinguished Professor of Physics and vice president for Research at FSU, took part in an experiment at the National Superconducting Cyclotron Laboratory, a national user facility located at Michigan State University in East Lansing, Mich. In the experiment, Kemper and his colleagues found that the structure of atomic nuclei of one radioactive isotope in particular -- magnesium-36, or Mg-36 -- is odd and unexpected.

“Ten years ago, complicated experiments like this one were a dream,” Kemper said. “Five years ago, we thought that in the next 10 years we would be able to carry it out. Now we have done one and so are much further along in experimental capability than even our wildest hopes.”

Protons and neutrons that comprise a nucleus array themselves in shells, each shell with a different energy level, Kemper explained. The phenomenon is described by the nuclear shell model. According to the model, specific numbers of protons and neutrons lead to shell structures that are especially stable -- except, that is, for nuclei of elements in the so-called “island of inversion.” There, ground-state nuclei that otherwise would have fairly typical shell structures adopt weird and strongly deformed structures. Mapping out which nuclei are within or outside the island of inversion helps researchers extend the usefulness of the nuclear shell model, which earned its creators the Nobel Prize for Physics in 1963 and continues to be a powerful tool for understanding the structure of nuclei.

Kemper collaborated with researchers from Michigan State University, the University of Tokyo and RIKEN in Japan, and the University of Surrey in England to study Mg-36. Contemporary theoretical models suggested that its nucleus, with 12 protons and 24 neutrons, should exist just within the island of inversion. But until the team’s result, which will appear in Physical Review Letters, experimentalists hadn’t made the necessary measurements of the rare magnesium isotope to know for sure.

The experiment was conducted at the National Superconducting Cyclotron Laboratory’s Coupled Cyclotron Facility, where a beam of calcium-48 nuclei was generated and directed at a beryllium target. This generated a variety of reaction products, including silicon-38, or Si-38. A large scientific instrument known as a fragment separator then was tuned to allow Si-38 to pass through and continue down the beam line.

Downstream, these Si-38 isotopes struck a second beryllium target, resulting in the creation of a smattering of new nuclei, including Mg-36. The beam was turned up into the focal plane of a three-story-tall spectrograph -- a giant analytical tool -- that was set to accept only Mg-36. When analyzed, the spectroscopic data indicated that Mg-36 is in fact within the island of inversion.

“Gamma-ray spectroscopy for Mg-36 has never been done because this nucleus is incredibly hard to reach,” said Alexandra Gade, an assistant professor at the National Superconducting Cyclotron Laboratory and lead author of the Physical Review Letters paper. “It’s not just another nucleus.”

For every 400,000 Si-38 nuclei impacting the second target, just one Mg-36 nucleus was produced.

“To the average person, this might seem like a lot of work for not a whole lot of benefit,” Kemper said. “But experiments like this are really all about broadening our understanding of matter -- how it is formed, how it behaves under extreme conditions, and what universal rules apply to it. This is fundamental to increasing our understanding of all matter in the universe. After all, even common elements such as gold and lead had to come from somewhere.”

Kirby Kemper | EurekAlert!
Further information:
http://www.fsu.edu

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>