Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU physicist takes a trip to nuclear 'island of inversion'

13.08.2007
Far from the everyday world occupied by such common elements such as gold and lead lies a little-understood realm inhabited by radioactive, or unstable, elements.

Recently, a nuclear physicist from Florida State University collaborated with other scientists from the United States, Japan and England in an experiment that illustrated how the “normal” rules of physics don’t apply for some of these radioactive elements.

Kirby W. Kemper, the Robert O. Lawton Distinguished Professor of Physics and vice president for Research at FSU, took part in an experiment at the National Superconducting Cyclotron Laboratory, a national user facility located at Michigan State University in East Lansing, Mich. In the experiment, Kemper and his colleagues found that the structure of atomic nuclei of one radioactive isotope in particular -- magnesium-36, or Mg-36 -- is odd and unexpected.

“Ten years ago, complicated experiments like this one were a dream,” Kemper said. “Five years ago, we thought that in the next 10 years we would be able to carry it out. Now we have done one and so are much further along in experimental capability than even our wildest hopes.”

Protons and neutrons that comprise a nucleus array themselves in shells, each shell with a different energy level, Kemper explained. The phenomenon is described by the nuclear shell model. According to the model, specific numbers of protons and neutrons lead to shell structures that are especially stable -- except, that is, for nuclei of elements in the so-called “island of inversion.” There, ground-state nuclei that otherwise would have fairly typical shell structures adopt weird and strongly deformed structures. Mapping out which nuclei are within or outside the island of inversion helps researchers extend the usefulness of the nuclear shell model, which earned its creators the Nobel Prize for Physics in 1963 and continues to be a powerful tool for understanding the structure of nuclei.

Kemper collaborated with researchers from Michigan State University, the University of Tokyo and RIKEN in Japan, and the University of Surrey in England to study Mg-36. Contemporary theoretical models suggested that its nucleus, with 12 protons and 24 neutrons, should exist just within the island of inversion. But until the team’s result, which will appear in Physical Review Letters, experimentalists hadn’t made the necessary measurements of the rare magnesium isotope to know for sure.

The experiment was conducted at the National Superconducting Cyclotron Laboratory’s Coupled Cyclotron Facility, where a beam of calcium-48 nuclei was generated and directed at a beryllium target. This generated a variety of reaction products, including silicon-38, or Si-38. A large scientific instrument known as a fragment separator then was tuned to allow Si-38 to pass through and continue down the beam line.

Downstream, these Si-38 isotopes struck a second beryllium target, resulting in the creation of a smattering of new nuclei, including Mg-36. The beam was turned up into the focal plane of a three-story-tall spectrograph -- a giant analytical tool -- that was set to accept only Mg-36. When analyzed, the spectroscopic data indicated that Mg-36 is in fact within the island of inversion.

“Gamma-ray spectroscopy for Mg-36 has never been done because this nucleus is incredibly hard to reach,” said Alexandra Gade, an assistant professor at the National Superconducting Cyclotron Laboratory and lead author of the Physical Review Letters paper. “It’s not just another nucleus.”

For every 400,000 Si-38 nuclei impacting the second target, just one Mg-36 nucleus was produced.

“To the average person, this might seem like a lot of work for not a whole lot of benefit,” Kemper said. “But experiments like this are really all about broadening our understanding of matter -- how it is formed, how it behaves under extreme conditions, and what universal rules apply to it. This is fundamental to increasing our understanding of all matter in the universe. After all, even common elements such as gold and lead had to come from somewhere.”

Kirby Kemper | EurekAlert!
Further information:
http://www.fsu.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>