Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU physicist takes a trip to nuclear 'island of inversion'

13.08.2007
Far from the everyday world occupied by such common elements such as gold and lead lies a little-understood realm inhabited by radioactive, or unstable, elements.

Recently, a nuclear physicist from Florida State University collaborated with other scientists from the United States, Japan and England in an experiment that illustrated how the “normal” rules of physics don’t apply for some of these radioactive elements.

Kirby W. Kemper, the Robert O. Lawton Distinguished Professor of Physics and vice president for Research at FSU, took part in an experiment at the National Superconducting Cyclotron Laboratory, a national user facility located at Michigan State University in East Lansing, Mich. In the experiment, Kemper and his colleagues found that the structure of atomic nuclei of one radioactive isotope in particular -- magnesium-36, or Mg-36 -- is odd and unexpected.

“Ten years ago, complicated experiments like this one were a dream,” Kemper said. “Five years ago, we thought that in the next 10 years we would be able to carry it out. Now we have done one and so are much further along in experimental capability than even our wildest hopes.”

Protons and neutrons that comprise a nucleus array themselves in shells, each shell with a different energy level, Kemper explained. The phenomenon is described by the nuclear shell model. According to the model, specific numbers of protons and neutrons lead to shell structures that are especially stable -- except, that is, for nuclei of elements in the so-called “island of inversion.” There, ground-state nuclei that otherwise would have fairly typical shell structures adopt weird and strongly deformed structures. Mapping out which nuclei are within or outside the island of inversion helps researchers extend the usefulness of the nuclear shell model, which earned its creators the Nobel Prize for Physics in 1963 and continues to be a powerful tool for understanding the structure of nuclei.

Kemper collaborated with researchers from Michigan State University, the University of Tokyo and RIKEN in Japan, and the University of Surrey in England to study Mg-36. Contemporary theoretical models suggested that its nucleus, with 12 protons and 24 neutrons, should exist just within the island of inversion. But until the team’s result, which will appear in Physical Review Letters, experimentalists hadn’t made the necessary measurements of the rare magnesium isotope to know for sure.

The experiment was conducted at the National Superconducting Cyclotron Laboratory’s Coupled Cyclotron Facility, where a beam of calcium-48 nuclei was generated and directed at a beryllium target. This generated a variety of reaction products, including silicon-38, or Si-38. A large scientific instrument known as a fragment separator then was tuned to allow Si-38 to pass through and continue down the beam line.

Downstream, these Si-38 isotopes struck a second beryllium target, resulting in the creation of a smattering of new nuclei, including Mg-36. The beam was turned up into the focal plane of a three-story-tall spectrograph -- a giant analytical tool -- that was set to accept only Mg-36. When analyzed, the spectroscopic data indicated that Mg-36 is in fact within the island of inversion.

“Gamma-ray spectroscopy for Mg-36 has never been done because this nucleus is incredibly hard to reach,” said Alexandra Gade, an assistant professor at the National Superconducting Cyclotron Laboratory and lead author of the Physical Review Letters paper. “It’s not just another nucleus.”

For every 400,000 Si-38 nuclei impacting the second target, just one Mg-36 nucleus was produced.

“To the average person, this might seem like a lot of work for not a whole lot of benefit,” Kemper said. “But experiments like this are really all about broadening our understanding of matter -- how it is formed, how it behaves under extreme conditions, and what universal rules apply to it. This is fundamental to increasing our understanding of all matter in the universe. After all, even common elements such as gold and lead had to come from somewhere.”

Kirby Kemper | EurekAlert!
Further information:
http://www.fsu.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>