Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers rely on Newton's interference for new experiment

13.08.2007
Most people think of Sir Isaac Newton as the father of gravity.

But for Lawrence Livermore National Laboratory physicist Henry Chapman and his colleagues, Newton's “dusty mirror” experiment served as a launching pad for them to keenly watch the X-ray induced explosion of microscopic objects.

Using the FLASH soft-X-ray free-electron laser (FEL) in Hamburg, Germany, the team blew up a plastic sphere, but used that same laser pulse to look at the sphere a split second later by placing an X-ray mirror right behind the object. A hologram (three-dimensional image of the object) formed through interference, which was caused when the light scattered through the sphere the first time combined with the light scattered through the sphere the second time (the light bounced back through the object from the mirror).

“We know from previous work we did at FLASH that the object did not explode during the initial 25-femtosecond pulse, and that forms the known reference wave of the hologram,” Chapman said. “The reference wave can be used to determine the unknown object wave, which is actually the same object, but a split second later.”

So where does Newton come in?

Newton created one of the earliest observations of interference in his “dusty mirror” experiment. In a darkened room, he used a prism and a small hole in a screen to form a quasi-monochromatic beam from sunlight, which he shone onto a back-quick silvered mirror. The mirror was angled to return the beam back through the hole and on the screen. Newton observed dark and light rings of light, which he found “strange and surprising.” It was 100 years later when the British scientist Thomas Young determined the rings were caused by interference at the screen between two paths of light scattering from dust particles on the mirror's front surface.

The research appears in the Aug. 9 edition of the journal, Nature.

Chapman designed the experiment after visiting the Chabot Space and Science Center with his wife (Sa_a Bajt, another author on the paper) and daughter. There was an optics exhibit that would let you see interference by looking down a long tube, which had a mirror at the bottom. When you held a small penlight close to the eye, you saw colored curved fringes in the mirror's reflection. The exhibit was described as the dusty mirror experiment. “It suddenly struck me that you could do the same thing with short pulses and X-ray mirrors, and it would be really interesting if the X- ray pulse was shorter than the time it takes for it to travel from the dust particle to the back of the mirror and back,” Chapman said.

And so the experiment was born.

The experiment is part of LLNL's Laboratory Directed Research and Development project: “Biological Imaging with Fourth-generation Light Sources” to develop the technique and determine the feasibility for single-molecule imaging experiments to be carried out at the Linac Coherent Light Source (LCLS) at Stanford when it comes on line.

Unlike the static conditions of Newton's experiment, in the recent experiment the object is ultimately vaporized by the X-ray pulse and the object size changes in the brief interval that the pulse takes to reflect back to the particle. The time it takes the pulse to return is encoded in the fringe pattern of the X-ray hologram, and this can be “read out” from the hologram to an accuracy of about 1 femtosecond. Coupled with the short wavelength of X-rays, the measurements give information simultaneously at the highest spatial resolution and time resolution for general noncrystalline materials.

“This experiment allows us to study the dynamics of material in the extreme conditions of intense FEL pulses, both during the pulse and as it turns into plasma,” Chapman said.

Plasma is considered to be a fourth state of matter, an ionized gas that has distinct properties. Until the recent experiment, there had been no structural methods to follow the early steps in plasma formation. Understanding these initial processes is crucial to future near atomic-resolution imaging experiments at LCLS. The key is to use short pulses to beam the damage and get a high-resolution image of the object before it explodes.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov/PAO

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>