Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swarming Starlings Help Probe Plasma, Crowds and Stock Market

10.08.2007
Researchers at the University of Warwick’s Physics Department’s Centre for Fusion, Space and Astrophysics have found a powerful technique that could be used to detect precisely when ordered patterns form in everything from plasma in the solar wind and fusion reactors, to crowds of people, or flocks of birds. The technique could even be used to find unusual patterns in stock market behaviour.

The researchers began their work in a research group interested in plasmas. These are difficult to study at the best of times because the opportunities to view plasma in the solar wind are limited by the small number of satellites observing such things and plasmas in nuclear fusion reactions are obviously not easily accessible.

The University of Warwick researchers were particularly interested in how complex systems such as plasma, crowds of people, or flocks of birds suddenly move from a disordered random state to an ordered one. To crack this problem they developed a technique that combines an earlier study of the flocking behavior of large groups of birds and insects with information technology used to correlate information from a range of parallel signals.

University of Warwick physicist Robert Wicks hit upon the idea of using an information technology tool called mutual information that can detect patterns and correlations from a very small set of points (typically 10 within a large system). In theory he believed that this method would be much more accurate than the normal statistical analysis of such dynamic systems such as crowds or plasmas and it should be particularly good at picking up the “phase transitions” from disorder to order in such complicated systems.

Initially the researchers were stumped as to how to test this theory. The very complexity (and often inaccessibility) that caused the observation problems they were trying to overcome meant there was no accurate real world date set to check their new technique against.

The solution came from the work of Hungarian researcher Tamás Vicsek, Professor of Physics in the Department of Biological Physics of Eotvos University, Budapest. An expert in the flocking behaviour of birds and insects.

Professor Viscek had devised a simple model to replicate the flocking behaviour of colonies of bacteria or large groups of birds and insects such as flocking starlings or swarming locusts. The Warwick research team recognized that the patterns model produced the same sort of order to disorder phase transitions that would be an ideal test for their mutual information based tool.

They applied their “mutual information” based technique to a Viscek model sampling the “signal” from a small number of points within the model and compared their technique to traditional statistical tools used to examine the behaviour of such dynamic systems. They found that in terms of error rate their “mutual information” based technique was four times better than traditional methods in understanding how and when these systems moved from disorder to order.

The new tool has obvious benefits in opening up new understandings of plasmas, crowds and flocking birds and insects but the University of Warwick research team think it could also be used for stock market analysis

The technique is particularly good at uncovering clumping of particles, movements from order to disorder, and correlating the performance of several points within a dynamic system. Taken together if the technique was applied to stock market shifts it could uncover patterns of clumping in the moving of different stocks. This could help market analysts uncover new and unexpected market connections and mutual dependencies between companies that had no obvious connection yet seem to share similar movements in share price.

Peter Dunn | alfa
Further information:
http://www2.warwick.ac.uk/newsandevents/pressreleases/swarming_starlings_help/

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>