Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrafast Laser Spectrometer Measures Heat Flow Through Molecules

10.08.2007
Global warming isn’t the only heat scientists are feeling. Another area in which heat flow is becoming crucial is the field of molecular electronics, where long-chain molecules attached to tiny electrodes are used to transport and switch electrons.

“How electrons flow through molecular wires has been studied, but less attention has been given to how the heat flows,” said Dana Dlott, a physical chemist at the University of Illinois. “One of the problems has been the lack of a measurement technique that could operate over short distances, short time intervals and large temperature bursts.”

As reported in the Aug. 10 issue of the journal Science, Dlott, engineering professor David Cahill and colleagues at Illinois have now developed an ultrafast thermal measurement technique capable of exploring heat transport in extended molecules fastened at one end to a metal surface.

“The ability to selectively probe the atomic groups that terminate the chains allows us to investigate the transport of heat through the chain molecules themselves,” Dlott said.

To study heat flow through long-chain hydrocarbon molecules anchored to a gold substrate, the researchers used an ultrafast laser spectrometer technique with picosecond time resolution (a picosecond is 1 million-millionth part of a second).

First, the flash from a femtosecond laser (a femtosecond is 1,000th of a picosecond) heated the substrate to about 800 degrees Celsius in one picosecond. This heat flowed quickly into the base of the hydrocarbon molecules and through the chains.

When heat reached the methyl groups at the ends of the chains, which were originally lined up in order, they began to shake and twist. An extremely sensitive form of coherent vibrational spectroscopy was used to probe this disordering.

The researchers’ study showed how the familiar concepts of heat transport do not apply at the level of individual molecules.

One cool finding, for example, is that heating the molecule to 800 degrees Celsius doesn’t destroy it. “Because the molecule stays hot for only a billionth of a second, it doesn’t have time to evaporate, burn up or chemically react,” said Cahill, a Willett Professor of Materials Science and Engineering.

Another surprising finding is that heat moves ballistically – that is, at a constant velocity – through the molecule. Each time two more carbon atoms were added to the chains, the heat took a little longer, about one-quarter of a picosecond, to reach the end.

“Heat usually travels at different velocities as it diffuses through its surroundings,” said Cahill, who also is a researcher at the Frederick Seitz Materials Science Laboratory and at the Coordinated Science Laboratory, both on the Illinois campus.

“We found the leading edge of the heat burst traveled ballistically along the hydrocarbon chains at a velocity of 1 kilometer per second.”

The researchers also determined the overall rate of heat flow in the molecule. They calculated a thermal conductance of 50 picowatts per degree Celsius.

“This is a new way of measuring temperature within a molecule,” Dlott said. “It’s the first step toward making a more precise thermometer with very high spatial resolution and with very high time resolution.”

With Dlott and Cahill, co-authors of the paper are postdoctoral research associates Zhaohui Wang, Alexei Lagutchev and Nak-Hyun Seong, and graduate students Jeffrey A. Carter and Yee Kan Koh.

The work was funded by the U.S. Department of Energy, the National Science Foundation and the Air Force Office of Scientific Research.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>