Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum analog of Ulam's conjecture can guide molecules, reactions

09.08.2007
Like navigating spacecraft through the solar system by means of gravity and small propulsive bursts, researchers can guide atoms, molecules and chemical reactions by utilizing the forces that bind nuclei and electrons into molecules (analogous to gravity) and by using light for propulsion. But, knowing the minimal amount of light required, and how that amount changes with the complexity of the molecule, has been a problem.

Now, by creating a quantum mechanical analog of Ulam’s conjecture, researchers at the University of Illinois and the University of California have expanded the flexibility and controllability of quantum mechanical systems.

“Using photons, we can harness chaotic motion to control chemical reactions and to move quantum objects, such as nanoclusters, molecules and buckyballs,” said Martin Gruebele, a William H. and Janet Lycan Professor of Chemistry, and the director of the Center for Biophysics and Computational Biology at Illinois.

Gruebele and co-author Peter Wolynes, a professor of chemistry and biochemistry at the University of California, describe their work in a paper accepted for publication in Physical Review Letters and posted on the journal’s Web site.

Given sufficient time, classical chaotic motion will spontaneously connect two points in phase space with arbitrary precision. In 1956, American mathematician Stanislaw Ulam conjectured that owing to this phase space-filling aspect of chaotic trajectories, a minimal series of energy expenditures would suffice to transfer a body from one point to another much more rapidly than by spontaneous motion.

Ulam’s conjecture is now routinely used to steer spacecraft around the solar system with minimal energy expenditure.

“The idea is that a complex system like our solar system has lots of planets, moons, and asteroids that can fling spacecraft gravitationally anywhere you want,” said Gruebele, who is also a professor of physics and biophysics, and a researcher at the Beckman Institute. “Rather than powering a rocket on a brute force, direct route, you can shoot your spacecraft near some moon, and let the moon do most of the work.”

Using photons as an energy source, electrons within molecules can move in much the same way as spacecraft in the solar system. But, there is a hitch: Quantum mechanics, not Newtonian dynamics, must be used to describe the motions. In quantum mechanics, the system is described by a wave function, or quantum state.

In their quantum mechanical analog of Ulam’s conjecture, Gruebele and Wolynes show there are limits on how efficiently an external force can nudge a system from a given initial state to a target state. They use the concept of a “state space” to describe all the possible quantum states of the system.

“We can calculate where this initial state will most likely go, and we can calculate where the target state will most likely come from,” Gruebele said. “We can then identify places in state space where the two are closest to one another.”

Those locations are where energy is most efficiently applied to perform the desired quantum transformation from initial state to target state. The researchers’ equations also tell them how many photons are needed, and set fundamental limits on the time required.

“We can wait for the best possible moment to use the least amount of energy,” Gruebele said. “What we have is a fast and accurate method for computing the most efficient way of steering a quantum system between two specified states.”

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>