Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First light for world's largest 'thermometer camera'

06.08.2007
The world's largest bolometer camera for submillimetre astronomy is now in service at the 12-m APEX telescope, located on the 5100m high Chajnantor plateau in the Chilean Andes. LABOCA was specifically designed for the study of extremely cold astronomical objects and, with its large field of view and very high sensitivity, will open new vistas in our knowledge of how stars form and how the first galaxies emerged from the Big Bang.

"A large fraction of all the gas in the Universe has extremely cold temperatures of around minus 250 degrees Celsius, a mere 20 degrees above absolute zero," says Karl Menten, director at the Max Planck Institute for Radioastronomy (MPIfR) in Bonn, Germany, that built LABOCA. "Studying these cold clouds requires looking at the light they radiate in the submillimetre range, with very sophisticated detectors."

Astronomers use bolometers for this task, which are, in essence, thermometers. They detect incoming radiation by registering the resulting rise in temperature. More specifically, a bolometer detector consists of an extremely thin foil that absorbs the incoming light. Any change of the radiation's intensity results in a slight change in temperature of the foil, which can then be registered by sensitive electronic thermometers. To be able to measure such minute temperature fluctuations requires the bolometers to be cooled down to less than 0.3 degrees above absolute zero, that is below minus 272.85 degrees Celsius.

"Cooling to such low temperatures requires using liquid helium, which is no simple feat for an observatory located at 5100m altitude," says Carlos De Breuck, the APEX instrument scientist at ESO.

Nor is it simple to measure the weak temperature radiation of astronomical objects. Millimetre and submillimetre radiation opens a window into the enigmatic cold Universe, but the signals from space are heavily absorbed by water vapour in the Earth's atmosphere. "It is a bit as if you were trying to see stars during the day," explains Axel Weiss of the MPIfR and leader of the team that installed LABOCA on APEX.

This is why telescopes for this kind of astronomy must be built on high, dry sites, and why the 5100m high plateau at Chajnantor in the extremely dry Atacama Desert was chosen. Even under such optimal conditions the heat from Earth's atmosphere is still a hundred thousand times more intense than the tiny astronomical signals from distant galaxies. Very special software is required to filter such weak signals from the overwhelming disturbances.

LABOCA (LArge BOlometer Camera) and its associated software were developed by MPIfR. "Since so far there are no commercial applications for such instruments we have to develop them ourselves," explains Ernst Kreysa, from MPIfR and head of the group that built the new instrument.

A bolometer camera combines many tiny bolometer units into a matrix, much like the pixels are combined in a digital camera. LABOCA observes at the submillimetric wavelength of 0.87 mm, and consists of 295 channels, which are arranged in 9 concentric hexagons around a central channel. The angular resolution is 18.6 arcsec, and the total field of view is 11.4 arcmin, a remarkable size for instruments of this kind.

"The first astronomical observations with LABOCA have revealed its great potential. In particular, the large number of LABOCA's detectors is an enormous improvement over earlier instruments," says Giorgio Siringo from MPIfR and member of the LABOCA team. "LABOCA is the first camera that will allow us to map large areas on the sky with high sensitivity."

The Atacama Pathfinder Experiment (APEX) where LABOCA is installed is a new-technology 12-m telescope, based on an ALMA prototype antenna, and operating at the ALMA site. It has modified optics and an improved antenna surface accuracy, and is designed to take advantage of the excellent sky transparency working with wavelengths in the 0.2 to 1.4 mm range.

"APEX is located a mere 2 km from the centre of the future ALMA array. The new LABOCA camera will be very complementary to ALMA, as its very wide view will find thousands of galaxies which will be observed in great detail with ALMA," says De Breuck.

APEX is a collaboration between the Max Planck Institute for Radioastronomy, Onsala Space Observatory and ESO.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2007/pr-35-07.html

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>