Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New oxidation methods streamline synthesis of important compounds

03.08.2007
One of the fundamental challenges facing organic synthesis in the 21st century is the need to significantly increase the efficiency with which carbon frameworks can be constructed and functionalized.
Chemists at the University of Illinois are helping to meet this challenge by developing a class of carbon-hydrogen catalysts that are highly selective, reactive and tolerant of other functionality.

The catalysts also offer a new strategy for streamlining the synthesis of important compounds, including drugs and pharmaceuticals, by avoiding the functional group manipulations required for working with oxidized materials.

"We are creating a toolbox of catalytic reactions that allow us to go directly from a carbon-hydrogen bond to a carbon-oxygen bond or to a carbon-nitrogen bond," said M. Christina White, a professor of chemistry at Illinois. "By offering fewer steps, fewer functional group manipulations and higher yields, this toolbox will change the way chemists make molecules."

Currently, chemists must make molecules by beginning with something that is already oxidized. But, having to start with that functionality means it must be carried - and protected - throughout the entire synthetic sequence. And that costs reagents, time, money and manpower, in addition to being inherently inefficient.

"Unlike standard synthetic methods, we don't have to carry the functionality throughout the entire sequence," White said. "Instead, we carry latent functionality as a carbon-hydrogen bond. Then, at a late stage in the synthesis, we remove the hydrogen and replace it with oxygen or nitrogen - right where we need it for the next chemical reaction."

In the June 13 issue of the Journal of the American Chemical Society, White and graduate student Kenneth J. Fraunhoffer describe the catalytic pathway they used to synthesize a derivative of the chemotherapeutic reagent acosamine. They were able to eliminate all of the functional group manipulations and cut by one-half the number of steps required, while maintaining the same purity and yield.

White has also used her catalyst to streamline the synthesis of a peptidase inhibitor drug candidate, a nucleotide-sugar L-galactose, and is currently working on the antibiotic erythromycin A.

White's research is funded by the Henry Dreyfus Foundation, the A.P.
Sloan Foundation, the University of Illinois, Merck Research Laboratories, the National Institutes of Health and the National Science Foundation.

Editor's note: To reach M. Christina White, call 217-333-6173;
e-mail: white@scs.uiuc.edu

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>