Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New oxidation methods streamline synthesis of important compounds

03.08.2007
One of the fundamental challenges facing organic synthesis in the 21st century is the need to significantly increase the efficiency with which carbon frameworks can be constructed and functionalized.
Chemists at the University of Illinois are helping to meet this challenge by developing a class of carbon-hydrogen catalysts that are highly selective, reactive and tolerant of other functionality.

The catalysts also offer a new strategy for streamlining the synthesis of important compounds, including drugs and pharmaceuticals, by avoiding the functional group manipulations required for working with oxidized materials.

"We are creating a toolbox of catalytic reactions that allow us to go directly from a carbon-hydrogen bond to a carbon-oxygen bond or to a carbon-nitrogen bond," said M. Christina White, a professor of chemistry at Illinois. "By offering fewer steps, fewer functional group manipulations and higher yields, this toolbox will change the way chemists make molecules."

Currently, chemists must make molecules by beginning with something that is already oxidized. But, having to start with that functionality means it must be carried - and protected - throughout the entire synthetic sequence. And that costs reagents, time, money and manpower, in addition to being inherently inefficient.

"Unlike standard synthetic methods, we don't have to carry the functionality throughout the entire sequence," White said. "Instead, we carry latent functionality as a carbon-hydrogen bond. Then, at a late stage in the synthesis, we remove the hydrogen and replace it with oxygen or nitrogen - right where we need it for the next chemical reaction."

In the June 13 issue of the Journal of the American Chemical Society, White and graduate student Kenneth J. Fraunhoffer describe the catalytic pathway they used to synthesize a derivative of the chemotherapeutic reagent acosamine. They were able to eliminate all of the functional group manipulations and cut by one-half the number of steps required, while maintaining the same purity and yield.

White has also used her catalyst to streamline the synthesis of a peptidase inhibitor drug candidate, a nucleotide-sugar L-galactose, and is currently working on the antibiotic erythromycin A.

White's research is funded by the Henry Dreyfus Foundation, the A.P.
Sloan Foundation, the University of Illinois, Merck Research Laboratories, the National Institutes of Health and the National Science Foundation.

Editor's note: To reach M. Christina White, call 217-333-6173;
e-mail: white@scs.uiuc.edu

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>