Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue 'milestone' a step toward advanced sensors, communications

03.08.2007
Engineers at Purdue University have shown how to finely control the spectral properties of ultrafast light pulses, a step toward creating advanced sensors, more powerful communications technologies and more precise laboratory instruments.

The laser pulses could be likened to strobes used in high-speed photography to freeze fast-moving objects such as bullets or flying insects. These laser pulses, however, are millions of times faster than such strobes, with flashes lasting a trillionth or quadrillionth of a second - a picosecond or femtosecond, respectively.

The properties of the pulses, when represented on a graph, take on specific shapes that characterize the changing light intensity from the beginning to end of each pulse. Precisely controlling this intensity, which is called "pulse shaping," will enable researchers to tune the laser pulses to suit specific applications, said Andrew Weiner, Distinguished Professor of Electrical and Computer Engineering at Purdue.

Researchers at other institutions have developed ultrafast lasers producing trains of pulses that are split into hundreds of thousands of segments, with each segment representing a different portion of the spectrum making up a pulse. The segments are called "comb lines" because they resemble teeth on a comb when represented on a graph, and the entire pulse train is called a "femtosecond frequency comb." The 2005 Nobel Prize in physics was awarded to researchers who precisely controlled the frequencies of these comb lines and demonstrated applications related to advanced optical clocks, which could improve communications, enhance navigation systems and enable new experiments to test physics theory, among other possible uses.

In the new research, the Purdue engineers precisely "shaped" 100 comb lines from such a frequency comb in a single pulse.

"There are still huge technological challenges ahead, but we really see 100 comb lines as a milestone, a significant step," Weiner said. The research is based at Purdue's Ultrafast Optics and Optical Fiber Communications Laboratory.

Findings are detailed in a research paper appearing online this week in the journal Nature Photonics. The paper was written by postdoctoral research associate Zhi Jiang, doctoral student Chen-Bin Huang, senior research scientist Daniel E. Leaird and Weiner, all in Purdue's School of Electrical and Computer Engineering.

The pulse-shaping technique, called optical arbitrary waveform generation, is not new. However, the Purdue team is the first to accomplish shaping of light pulses from a femtosecond frequency comb and to demonstrate the technique on such a fine scale by controlling the properties of 100 spectral comb lines within each pulse.

By precisely controlling this "fine frequency structure" of laser pulses, researchers hope to create advanced optical sensors that detect and measure hazardous materials or pollutants, ultra-sensitive spectroscopy for laboratory research, and optics-based communications systems that transmit greater volumes of information with better quality while increasing the bandwidth. However, fully realizing these goals will require controlling 100,000 to 1 million comb lines in each pulse, Weiner said.

The advancement by the Purdue engineers enables the researchers to control the amplitude and "phase" of individual comb lines, or the high and low points of each spectral line, representing a step toward applying the technique for advanced technologies.

The research is funded by the National Science Foundation and the Defense Advanced Research Projects Agency, or DARPA.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Source: Andrew M. Weiner, (765)494-5574, amw@ecn.purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>