Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue 'milestone' a step toward advanced sensors, communications

03.08.2007
Engineers at Purdue University have shown how to finely control the spectral properties of ultrafast light pulses, a step toward creating advanced sensors, more powerful communications technologies and more precise laboratory instruments.

The laser pulses could be likened to strobes used in high-speed photography to freeze fast-moving objects such as bullets or flying insects. These laser pulses, however, are millions of times faster than such strobes, with flashes lasting a trillionth or quadrillionth of a second - a picosecond or femtosecond, respectively.

The properties of the pulses, when represented on a graph, take on specific shapes that characterize the changing light intensity from the beginning to end of each pulse. Precisely controlling this intensity, which is called "pulse shaping," will enable researchers to tune the laser pulses to suit specific applications, said Andrew Weiner, Distinguished Professor of Electrical and Computer Engineering at Purdue.

Researchers at other institutions have developed ultrafast lasers producing trains of pulses that are split into hundreds of thousands of segments, with each segment representing a different portion of the spectrum making up a pulse. The segments are called "comb lines" because they resemble teeth on a comb when represented on a graph, and the entire pulse train is called a "femtosecond frequency comb." The 2005 Nobel Prize in physics was awarded to researchers who precisely controlled the frequencies of these comb lines and demonstrated applications related to advanced optical clocks, which could improve communications, enhance navigation systems and enable new experiments to test physics theory, among other possible uses.

In the new research, the Purdue engineers precisely "shaped" 100 comb lines from such a frequency comb in a single pulse.

"There are still huge technological challenges ahead, but we really see 100 comb lines as a milestone, a significant step," Weiner said. The research is based at Purdue's Ultrafast Optics and Optical Fiber Communications Laboratory.

Findings are detailed in a research paper appearing online this week in the journal Nature Photonics. The paper was written by postdoctoral research associate Zhi Jiang, doctoral student Chen-Bin Huang, senior research scientist Daniel E. Leaird and Weiner, all in Purdue's School of Electrical and Computer Engineering.

The pulse-shaping technique, called optical arbitrary waveform generation, is not new. However, the Purdue team is the first to accomplish shaping of light pulses from a femtosecond frequency comb and to demonstrate the technique on such a fine scale by controlling the properties of 100 spectral comb lines within each pulse.

By precisely controlling this "fine frequency structure" of laser pulses, researchers hope to create advanced optical sensors that detect and measure hazardous materials or pollutants, ultra-sensitive spectroscopy for laboratory research, and optics-based communications systems that transmit greater volumes of information with better quality while increasing the bandwidth. However, fully realizing these goals will require controlling 100,000 to 1 million comb lines in each pulse, Weiner said.

The advancement by the Purdue engineers enables the researchers to control the amplitude and "phase" of individual comb lines, or the high and low points of each spectral line, representing a step toward applying the technique for advanced technologies.

The research is funded by the National Science Foundation and the Defense Advanced Research Projects Agency, or DARPA.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Source: Andrew M. Weiner, (765)494-5574, amw@ecn.purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Physics and Astronomy:

nachricht Light-emitting bubbles captured in the wild
28.02.2017 | Georg-August-Universität Göttingen

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>