Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defining the thickness of polymer films by a drop of water

03.08.2007
Place a drop of water on a floating thin polymer sheet and wrinkles will arise around the drop. You may see this even with a plain microscope. The amount of wrinkles and their lengths appear to be a straight measure for the elasticity and the thickness of the polymer sheet.

FOM-researcher Wim de Jeu and his fellow researchers from the United States of America and from Chile will announce this in Science, on August 3rd, 2007. The wrinkles arise, being influenced by the surface tension of the drop of water. Consequently, such a floating polymer sheet is a fine model for studying the behaviour of thin films in fluids. This combination is generally found in biological and synthetic soft materials.

The researchers used thin sheets (in academic jargon ‘films’) of polystyrene for their measurements, which they attached to a glass substratum. The thickness of the thin sheets, defined by means of x-ray reflectivity, varied from 31 to 233 nanometers. Then, they cut a circle 22.8 millimetres in diameter in each of the sheets and after that they dipped it into a Petri dish in distilled de-ionized water. In the Petri dish the surrounded part of the thin sheets came off and was floating on the water. As polystyrene is so-called ‘hydrophobic’, the surface tension flattens the polystyrene at the edge of the sheet. Thus, floating flat discs of polystyrene came into being. If the researchers then placed a droplet of water in the centre or pressed a needle, as a consequence of this disruption regular patterns of wrinkles arose that were facing outwards.

The wrinkled pattern appears to correspond nicely to the prognosis of a recently developed theory. This theory converts the surface tension of the drop of water in capillary forces that are affecting the polymer film. The researchers now combined the scaling relations that were developed for the length of the wrinkles with those for the number of wrinkles that will arise. This will produce a measuring standard to define the elasticity and thickness of very thin polymer sheets. In order to accomplish this, it appears that in actual practice, all that is necessary is a Petri scale with water, a plain microscope and a digital camera, because the patterns are extremely well visible at a small magnification. Next, they tested their method on polymer films that they had provided with plasticiser in order to vary the elasticity of the films. Even then the method produces reliable results to the thickness of the films.

The method that the researchers have been developing, just provides another large advantage. When they disrupt the film by placing a drop of water or pressing a needle, wrinkles will arise. In time the wrinkles will disappear, because the disruptions are spreading out all over the film. The film is ‘relaxing’ so to speak. Other research methods are applying the films to a firm substratum, which may lead to mechanical tensions in the sheets. These are disrupting the ‘relaxation’ of the film, which influences the measuring results. When the films are floating in or on a fluid, similar tensions may then ebb to the underlying fluid, after which the measurements will solely reproduce the process of the wrinkling.

Huub Eggen | alfa
Further information:
http://www.fom.nl/live/english/news/artikel.pag?objectnumber=64898

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>