Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defining the thickness of polymer films by a drop of water

03.08.2007
Place a drop of water on a floating thin polymer sheet and wrinkles will arise around the drop. You may see this even with a plain microscope. The amount of wrinkles and their lengths appear to be a straight measure for the elasticity and the thickness of the polymer sheet.

FOM-researcher Wim de Jeu and his fellow researchers from the United States of America and from Chile will announce this in Science, on August 3rd, 2007. The wrinkles arise, being influenced by the surface tension of the drop of water. Consequently, such a floating polymer sheet is a fine model for studying the behaviour of thin films in fluids. This combination is generally found in biological and synthetic soft materials.

The researchers used thin sheets (in academic jargon ‘films’) of polystyrene for their measurements, which they attached to a glass substratum. The thickness of the thin sheets, defined by means of x-ray reflectivity, varied from 31 to 233 nanometers. Then, they cut a circle 22.8 millimetres in diameter in each of the sheets and after that they dipped it into a Petri dish in distilled de-ionized water. In the Petri dish the surrounded part of the thin sheets came off and was floating on the water. As polystyrene is so-called ‘hydrophobic’, the surface tension flattens the polystyrene at the edge of the sheet. Thus, floating flat discs of polystyrene came into being. If the researchers then placed a droplet of water in the centre or pressed a needle, as a consequence of this disruption regular patterns of wrinkles arose that were facing outwards.

The wrinkled pattern appears to correspond nicely to the prognosis of a recently developed theory. This theory converts the surface tension of the drop of water in capillary forces that are affecting the polymer film. The researchers now combined the scaling relations that were developed for the length of the wrinkles with those for the number of wrinkles that will arise. This will produce a measuring standard to define the elasticity and thickness of very thin polymer sheets. In order to accomplish this, it appears that in actual practice, all that is necessary is a Petri scale with water, a plain microscope and a digital camera, because the patterns are extremely well visible at a small magnification. Next, they tested their method on polymer films that they had provided with plasticiser in order to vary the elasticity of the films. Even then the method produces reliable results to the thickness of the films.

The method that the researchers have been developing, just provides another large advantage. When they disrupt the film by placing a drop of water or pressing a needle, wrinkles will arise. In time the wrinkles will disappear, because the disruptions are spreading out all over the film. The film is ‘relaxing’ so to speak. Other research methods are applying the films to a firm substratum, which may lead to mechanical tensions in the sheets. These are disrupting the ‘relaxation’ of the film, which influences the measuring results. When the films are floating in or on a fluid, similar tensions may then ebb to the underlying fluid, after which the measurements will solely reproduce the process of the wrinkling.

Huub Eggen | alfa
Further information:
http://www.fom.nl/live/english/news/artikel.pag?objectnumber=64898

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>