Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unravelling the random fluctuations of nothing

03.08.2007
Universe’s stringy birth revealed by young Czech scientist in EURYI winning project

The dream of theoretical physics is to unite behind a common theory that explains everything, but that goal has remained highly elusive. String theory emerged 40 years ago as one of the most promising candidates for such a theory, and has since slipped in and out of favour as new innovations have occurred. Now Europe is fortunate to have one of the world’s leading experts in string theory working on an ambitious project that could make significant progress towards a unified theory, and at least help resolve two mysteries. One is how the universe emerged in the beginning as a random fluctuation of a vacuum state, and the other is a common explanation for all sub-atomic particles.

Czech physicist Dr. Martin Schnabl has been selected to receive a EURYI Award by the European science Foundation (ESF) and the European Heads of Research Councils (EuroHORCS) to help him pursue his project and build on five years of hard work culminating in the solution of an equation in string field theory that had gone unsolved for 20 years. The elegance and beauty of the solution have been widely praised in a field that is highly regarded for its aesthetic appeal, drawing together many important concepts in mathematics and physics. The EURYI Awards scheme, entering its fourth and final year, aims to attract outstanding young researchers from anywhere in the world to work in Europe for the further development of European science, contributing to building up the next generation of leading European researchers.

String theory was developed in an attempt to bring together the physics of the big and the small, represented respectively by general relativity and quantum mechanics. It replaces the idea of elementary particles occupying a single zero point with a one dimensional string joining two points. In this sense a string, like a particle, is a model designed to represent or predict particular fundamental properties of the physical universe. But while the number of particles continued to grow, the string was an attempt to join them all together, leading to the idea of a string field. This field represents all particles as vibrations of a string at given frequencies. The string field is then the sum total of all vibrations, elegantly bringing all particles together into one, so that physicists no longer need to be embarrassed by the discovery of yet another particle type.

“It's a sort of field theory for the infinite tower of oscillatory modes of a string, each of them representing different particle species,” Schnabl said. As Schnabl observed, string field theory, by explaining also how quantum mechanics is compatible with general relativity, is essential for understanding what goes on in situations where both of these are playing together.

“It is important in the regimes where quantum gravity is important, such as black holes and the beginning of the universe,” added Schnabl. In both cases, dimensions can be small, requiring quantum mechanics, but energies and mass are enormous, creating huge gravitational fields that currently can only be dealt with by general relativity.

One of the problems of string field theory lies in conducting experiments that test predictions or help inspire new theoretical developments. The theory predicts that the universe has 10 dimensions, of which four are the ones we observe in spacetime. Yet in 40 years no better candidate has emerged to explain the properties of the universe, or all universes, at all scales of time and distance. Furthermore the string field has a habit of feeding the rest of physics and mathematics by virtue of lying at the cutting edge of analytical reason. This is why it should interest lay people as well, insisted Schnabl. “The very general public can be interested if they enjoy watching mankind's advances in understanding some of the deepest questions about the nature of our universe.”

Schnabl, a 34 year-old Czech scientist, is a member of Princeton’s Institute for Advanced Study. He took his PhD in theoretical physics at the International School for Advanced Studies in Trieste, Italy, then went on to become research associate at the Massachusetts Institute of Technology and CERN fellow at the European Laboratory for Particle Physics. He has established himself as one of the world experts on string field theory, a particularly promising approach to string theory. He will be conducting his research at the Institute of Physics Academy of Sciences of the Czech Republic after receiving his award in Helsinki, Finland on 27 September 2007 with other 19 young researchers.

EURYI is designed to attract outstanding young scientists from around the world to create their own research teams at European research centres and launch potential world-leading research careers. Most awards are between €1,000,000 and €1,250,000, comparable in size to the Nobel Prize.

Thomas Lau | alfa
Further information:
http://www.esf.org/activities/euryi/awards/2007/martin-schnabl.html

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>