Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unravelling the random fluctuations of nothing

03.08.2007
Universe’s stringy birth revealed by young Czech scientist in EURYI winning project

The dream of theoretical physics is to unite behind a common theory that explains everything, but that goal has remained highly elusive. String theory emerged 40 years ago as one of the most promising candidates for such a theory, and has since slipped in and out of favour as new innovations have occurred. Now Europe is fortunate to have one of the world’s leading experts in string theory working on an ambitious project that could make significant progress towards a unified theory, and at least help resolve two mysteries. One is how the universe emerged in the beginning as a random fluctuation of a vacuum state, and the other is a common explanation for all sub-atomic particles.

Czech physicist Dr. Martin Schnabl has been selected to receive a EURYI Award by the European science Foundation (ESF) and the European Heads of Research Councils (EuroHORCS) to help him pursue his project and build on five years of hard work culminating in the solution of an equation in string field theory that had gone unsolved for 20 years. The elegance and beauty of the solution have been widely praised in a field that is highly regarded for its aesthetic appeal, drawing together many important concepts in mathematics and physics. The EURYI Awards scheme, entering its fourth and final year, aims to attract outstanding young researchers from anywhere in the world to work in Europe for the further development of European science, contributing to building up the next generation of leading European researchers.

String theory was developed in an attempt to bring together the physics of the big and the small, represented respectively by general relativity and quantum mechanics. It replaces the idea of elementary particles occupying a single zero point with a one dimensional string joining two points. In this sense a string, like a particle, is a model designed to represent or predict particular fundamental properties of the physical universe. But while the number of particles continued to grow, the string was an attempt to join them all together, leading to the idea of a string field. This field represents all particles as vibrations of a string at given frequencies. The string field is then the sum total of all vibrations, elegantly bringing all particles together into one, so that physicists no longer need to be embarrassed by the discovery of yet another particle type.

“It's a sort of field theory for the infinite tower of oscillatory modes of a string, each of them representing different particle species,” Schnabl said. As Schnabl observed, string field theory, by explaining also how quantum mechanics is compatible with general relativity, is essential for understanding what goes on in situations where both of these are playing together.

“It is important in the regimes where quantum gravity is important, such as black holes and the beginning of the universe,” added Schnabl. In both cases, dimensions can be small, requiring quantum mechanics, but energies and mass are enormous, creating huge gravitational fields that currently can only be dealt with by general relativity.

One of the problems of string field theory lies in conducting experiments that test predictions or help inspire new theoretical developments. The theory predicts that the universe has 10 dimensions, of which four are the ones we observe in spacetime. Yet in 40 years no better candidate has emerged to explain the properties of the universe, or all universes, at all scales of time and distance. Furthermore the string field has a habit of feeding the rest of physics and mathematics by virtue of lying at the cutting edge of analytical reason. This is why it should interest lay people as well, insisted Schnabl. “The very general public can be interested if they enjoy watching mankind's advances in understanding some of the deepest questions about the nature of our universe.”

Schnabl, a 34 year-old Czech scientist, is a member of Princeton’s Institute for Advanced Study. He took his PhD in theoretical physics at the International School for Advanced Studies in Trieste, Italy, then went on to become research associate at the Massachusetts Institute of Technology and CERN fellow at the European Laboratory for Particle Physics. He has established himself as one of the world experts on string field theory, a particularly promising approach to string theory. He will be conducting his research at the Institute of Physics Academy of Sciences of the Czech Republic after receiving his award in Helsinki, Finland on 27 September 2007 with other 19 young researchers.

EURYI is designed to attract outstanding young scientists from around the world to create their own research teams at European research centres and launch potential world-leading research careers. Most awards are between €1,000,000 and €1,250,000, comparable in size to the Nobel Prize.

Thomas Lau | alfa
Further information:
http://www.esf.org/activities/euryi/awards/2007/martin-schnabl.html

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>