Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Japanese and NASA Satellites Unveil New Type of Active Galaxy

01.08.2007
An international team of astronomers using NASA’s Swift satellite and the Japanese/U.S. Suzaku X-ray observatory has discovered a new class of active galactic nuclei (AGN).
By now, you’d think that astronomers would have found all the different classes of AGN — extraordinarily energetic cores of galaxies powered by accreting supermassive black holes. AGN such as quasars, blazars, and Seyfert galaxies are among the most luminous objects in our Universe, often pouring out the energy of billions of stars from a region no larger than our solar system.

But by using Swift and Suzaku, the team has discovered that a relatively common class of AGN has escaped detection…until now. These objects are so heavily shrouded in gas and dust that virtually no light gets out.

"This is an important discovery because it will help us better understand why some supermassive black holes shine and others don’t," says astronomer and team member Jack Tueller of NASA’s Goddard Space Flight Center in Greenbelt, Md.

Evidence for this new type of AGN began surfacing over the past two years. Using Swift’s Burst Alert Telescope (BAT), a team led by Tueller has found several hundred relatively nearby AGNs. Many were previously missed because their visible and ultraviolet light was smothered by gas and dust. The BAT was able to detect high-energy X-rays from these heavily blanketed AGNs because, unlike visible light, high-energy X-rays can punch through thick gas and dust.

To follow up on this discovery, Yoshihiro Ueda of Kyoto University, Japan, Tueller, and a team of Japanese and American astronomers targeted two of these AGNs with Suzaku. They were hoping to determine whether these heavily obscured AGNs are basically the same type of objects as other AGN, or whether they are fundamentally different. The AGNs reside in the galaxies ESO 005-G004 and ESO 297-G018, which are about 80 million and 350 million light-years from Earth, respectively.

Suzaku covers a broader range of X-ray energies than BAT, so astronomers expected Suzaku to see X-rays across a wide swath of the X-ray spectum. But despite Suzaku’s high sensitivity, it detected very few low- or medium-energy X-rays from these two AGN, which explains why previous X-ray AGN surveys missed them.

According to popular models, AGNs are surrounded by a donut-shaped ring of material, which partially obscures our view of the black hole. Our viewing angle with respect to the donut determines what type of object we see. But team member Richard Mushotzky, also at NASA Goddard, thinks these newly discovered AGN are completely surrounded by a shell of obscuring material. "We can see visible light from other types of AGN because there is scattered light," says Mushotzky. "But in these two galaxies, all the light coming from the nucleus is totally blocked."

Another possibility is that these AGN have little gas in their vicinity. In other AGN, the gas scatters light at other wavelengths, which makes the AGN visible even if they are shrouded in obscuring material.

"Our results imply that there must be a large number of yet unrecognized obscured AGNs in the local universe," says Ueda.

In fact, these objects might comprise about 20 percent of point sources comprising the X-ray background, a glow of X-ray radiation that pervades our Universe. NASA’s Chandra X-ray Observatory has found that this background is actually produced by huge numbers of AGNs, but Chandra was unable to identify the nature of all the sources.

By missing this new class, previous AGN surveys were heavily biased, and thus gave an incomplete picture of how supermassive black holes and their host galaxies have evolved over cosmic history. "We think these black holes have played a crucial role in controlling the formation of galaxies, and they control the flow of matter into clusters," says Tueller. "You can’t understand the universe without understanding giant black holes and what they’re doing. To complete our understanding we must have an unbiased sample."

The discovery paper will appear in the August 1st issue of the Astrophysical Journal Letters.

More information about Swift can be found at http://swift.gsfc.nasa.gov, and about Suzaku can be found at http://suzaku.gsfc.nasa.gov.

Robert Naeye | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2007/active_galaxy.html

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>