Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists: Quantum Dance Draws Unexpected Guests

31.07.2007
It was always thought to be restricted to everyday types, with no magnetic sorts allowed in the door.

But the quantum dance party’s guest list just got bigger.

In a paper that appeared Friday in the online edition of Physical Review Letters, University of Florida physicists report that — contrary to expectations — electrons in magnetic metals exhibit the same quantum tendencies as their counterparts in ordinary metals at extremely low temperatures. Rather than acting like particles that move independently of each other, they behave as waves, influencing each other’s paths and trajectories.

The effect is a bit like a roomful of dancers performing, arm-in-arm, a frenetic set piece.

The electrons push and pull each other around, then return to the spot where they started off, as though completing a choreographed finale.

Call it “the wave.”

“They move around and have these elastic collisions, and then they remember they are waves, and they end up back in the same place they started,” said Art Hebard, a UF professor of physics and one of four co-authors of the paper.

It is an accepted fact in condensed matter physics, the branch of physics that studies the physical properties of matter, that electrons in ordinary metals can act as waves. This behavior is seen at extremely low temperatures of hundreds of degrees below zero, when random collisions are reduced to a minimum. “Quantum” refers to the electrons’ schizophrenic ability to behave both as the independent particles they are, and as waves, with each electron’s “ripple” affecting those of neighboring electrons and vice versa.

Physicists had long suspected that electrons in magnetic metals would not share this trait, since magnetic fields would interfere or, in Hebard’s words, “scramble up” the peaks and troughs in the waves.

Add the magnetic field, they thought, and it would be like Judas Priest crashing a waltz. All the dancers would scatter.

But Hebard and the other scientists found to their surprise that the dancing electrons in magnetic iron kept up their routines, seemingly oblivious to the change in atmospherics.

With the aid of a one-of-a-kind apparatus called Sample Handling in Vacuum, or SHIVA, they grew extremely thin films of iron — films thousands of times thinner than a human hair. The stainless steel apparatus maintains an ultra high vacuum to guard against humid air, which would cause them to rust immediately and become useless. The physicists relied on such thin films because they could observe the quantum effects much more easily in near two-dimensional samples, rather than the three dimensions that would come with thicker samples.

The scientists then wielded multiple mechanical arms within the $180,000 machine — the SHIVA name is intentionally reminiscent of the many-armed Indian god — to transfer the films to a test chamber. There, at a temperature of minus 452 degrees Fahrenheit, they submitted the films to tests, including applying magnetic fields as strong as 140,000 times the earth’s magnetic field.

The end result: The physicists observed a “signature response” as electrical currents flowed through the films, giving away the fact that the electrons were doing the quantum dance.

“What I find most remarkable about this work is that it shows that electrons do not really have one-to-one encounters,” said Dmitrii Maslov, a UF professor of physics. “The ‘collective’ versus ‘one-to-one’ interactions are now being seen in many materials of practical interest, and Prof. Hebard’s study gives an important contribution to this emerging field.”

Hebard said physicists believe the electrons in the magnetic iron continue to act like waves because of the presence of magnetic interactions that previously were not considered relevant.

The findings have no immediate practical application. But with computer chips and other modern electronics based on thin metals and how they interact, that could change in the future. “We’re asking fundamental questions about magnets,” Hebard said. “And magnetic materials are used in many applications.”

The lead author of the Physical Review Letters paper is Partha Mitra, who performed the experimental research as a doctoral student at UF and who is now a postdoctoral associate at The Pennsylvania State University. The other authors are UF doctoral student Rajiv Misra, Khandker Muttalib, a UF faculty member in theoretical physics, and Peter Wolfle, also a theoretical physicist, of the Universitat Karlsruhe in Germany.

| newswise
Further information:
http://www.ufl.edu

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>