Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birth of a Colossus on Wheels

31.07.2007
First ALMA Transporter Ready to Go

The first of two spectacular vehicles for the ALMA (Atacama Large Millimeter/submillimeter Array) Observatory rolled out of its hangar and passed successfully a series of tests. This vehicle, the ALMA antenna transporter, is a rather exceptional 'lorry' driving on 28 tyres. It is 10m wide, 20m long and 6m high, weighs 130 tons and has as much power as two Formula 1 engines. This colossus will be able to transport a 115-ton antenna and set it down on a concrete pad within millimetres of a prescribed position.

The ALMA Project is a giant, international observatory currently in construction on the high-altitude Chajnantor site in Chile, and composed initially of 66 high-precision telescopes, operating at wavelengths of 0.3 to 9.6 mm. The ALMA antennas will be electronically combined and provide astronomical observations which are equivalent to a single large telescope of tremendous size and resolution. ALMA will be able to probe the Universe at millimetre and submillimetre wavelengths with unprecedented sensitivity and resolution, with an accuracy up to ten times better than the Hubble Space Telescope, and complementing images made with ESO's Very Large Telescope Interferometer.

The telescopes can be moved across the high-altitude desert Chajnantor plateau, covering antenna configurations as compact as 150 metres to as wide as 15 kilometres. Changing the relative positions of the antennas and thus also the configuration of the array allows for different observing modes, comparable to using a zoom lens on a camera.

"The ALMA antennas will be assembled and their functionality will be verified at a base camp, located at an altitude of 2900 metres and the transporters will in a first step bring the telescopes up to the 5000-m high observatory," explains Hans Rykaczewski, the European ALMA Project Manager. "There, the transporters will move the antennas from the compact configuration to any extended configuration which could stretch up to 15 kilometres."

"The ability to move antennas to reconfigure the observatory's array is vital to fulfilling ALMA's scientific mission. The operations plan calls for moving antennas on a regular basis to provide the flexibility that will be such a big part of ALMA's scientific value. That's why the transporters are so important and why this is such a significant milestone," says Adrian Russell, the North American Project Manager for ALMA.

Given their important functions, both for the scientific work and in transporting high-tech antennas with the required care, the vehicles must live up to very demanding operational requirements. Each transporter has a mass of 130 tons and is able to lift and transport antennas of up to a weight of 115 tons. The transporters have to position the antennas on the docking pads with precision in the millimetre range. On the other hand, the transporters must be powerful enough to reliably and safely climb from an altitude of 2900 m to 5000 m with their heavy and valuable load, putting extraordinary demands on the two 500 kW diesel engines.

Not only moving telescopes to the high altitude site is a technical challenge, even driving to the base camp requires special attention. To drive this road downhill a special brake system had to be installed. Finally, as the transporters will be operated at an altitude with significantly reduced oxygen levels, a range of redundant safety devices had to be installed to protect both personnel and equipment from possible mishaps or accidents.

"In order to operate the transporter at the ALMA site, two engines with a total of about 1400 horse powers are installed and all the components have been checked to meet the requirements at this extreme conditions," says Andreas Kohler, Vice President for Research and Development at Scheuerle Fahrzeugfabrik, the company which signed in December 2005 the contract with ESO to build these two unique transporters. "The human factor was also considered. For example, the backrests of the driver seats are shaped to allow the driver to wear his oxygen tank while driving."

At the high altitude site of 5000 m, the two engines will loose about half of their power (compared to sea level) because of the reduced oxygen content on the air. The ALMA transporters will be able to move at the speed of 20 km/h when empty and 12 km/h when loaded with an antenna. The transporters can be driven from the cabin like a truck, or from a portable panel like a toy car.

The first ALMA transporter is planned to be delivered to the ALMA Observatory by the end of 2007. The second vehicle should arrive about three months later.

Henri Boffin | alfa
Further information:
http://www.eso.org
http://www.eso.org/public/outreach/press-rel/pr-2007/phot-32-07.html
http://www.eso.org/public/outreach/press-rel/pr-2007/vid-32-07_broadcast.html

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>