Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thousands of atoms swap 'spins' with partners in quantum square dance

27.07.2007
NIST advance is step toward quantum computing with neutral atoms

Physicists at the Commerce Department’s National Institute of Standards and Technology (NIST) have induced thousands of atoms trapped by laser beams to swap “spins” with partners simultaneously. The repeated exchanges, like a quantum version of swinging your partner in a square dance but lasting a total of just 10 milliseconds, might someday carry out logic operations in quantum computers, which theoretically could quickly solve certain problems that today's best supercomputers could not solve in years. The atomic dance, described in the July 26 issue of Nature,* advances prospects for the use of neutral atoms as quantum bits (qubits) for storing and processing data in quantum computers. Thanks to the peculiarities of quantum mechanics, nature's rule book for the smallest particles of matter and light, quantum computers might provide extraordinary power for applications such as breaking today's most widely used encryption codes. Neutral atoms are among about a dozen systems being evaluated around the world as qubits; their weak interactions with the environment may help to reduce computing errors.

Led by Nobel Laureate William Phillips, the NIST group demonstrated the essential part of a so-called swap operation, in which atom partners exchange their internal spin states. (Spin can be visualized as a rotating top pointing up or down.) In the binary language of computers, the atoms swap values from 1 (“spin up”) to 0 (“spin down”), or vice versa. Unlike classical bits, which would either swap or not, quantum bits can be simultaneously in an unusual state of having swapped and not swapped at the same time. Under these conditions, spin swapping has the effect of “entangling” the pairs, a quantum phenomenon that links the atoms' properties even when they are physically separated. Entanglement is one of the features that make quantum computers potentially so powerful.

“This is the first time these spin-entangling interactions have been demonstrated between pairs of atoms in an optical lattice,” says Trey Porto, one of the authors. “Other research groups have entangled atoms in lattices as extended clusters. By isolating pairs, we can focus on the simplest units for quantum logic.”

The swapping process is a way of creating logical connections among data, crucial in any computer. A logic operation is the equivalent of an “if/then” statement, such as: If two qubits have opposite states, then they should exchange values. The logical connections in quantum computers are created using entanglement, which in effect allows for multiple simultaneous, correlated possibilities.

The NIST experiment was performed with about 60,000 rubidium atoms in a Bose-Einstein condensate (BEC), a special state of matter in which all atoms are in the same quantum state. They were trapped within a three-dimensional grid of light formed by three pairs of infrared laser beams. The lasers were arranged to create two horizontal lattices overlapping like two mesh screens, one twice as fine as the other in one dimension. This created many pairs of energy “wells” for trapping atoms.

The scientists attempted to place a single atom in each well, with one atom spin up (or 1) and the other down (or 0). Then, they merged all double wells to force each pair of atoms into the same well, where they could interact with each other. When two such identical atoms are forced into the same physical location, quantum mechanics imposes a specific type of symmetry (only two of four seemingly possible combinations of quantum states are allowed). Due to this restriction, the merged atoms oscillate between the condition in which one atom is 1 and the other is 0, to the opposite condition. This behavior is unique to identical particles.

As they swap spins, the atoms pass in and out of entanglement. At the “half-swap” points the spin of each atom is uncertain and, if measured, might turn out to be either up or down. But whatever the result, a measurement on the other atom, equally uncertain before the measurement, would be sure to be the opposite. This entanglement is the key feature that enables quantum computation. According to Porto, the work reported in Nature is the first time that quantum mechanical symmetry (“exchange symmetry”) has been used to perform such an entangling operation with atoms.

The current set-up is not directly scalable to an arbitrary computer architecture, Porto says, since it performs the same spin-swap in parallel for all pairs of atoms. Researchers are developing ways to address and manipulate any pair of atoms in the lattice, which should allow for scalable architectures. Furthermore, not all atoms participated in the swap process, primarily because of imperfect initial loading of the atoms in the lattice. (Some double-wells contained only one atom and had no partner to exchange with.) The scientists estimate that the swap worked for at least 65 percent of the double wells.

The NIST group is continuing to work on improving the reliability of each step and on completing the logic operation by separating atoms after they interact. The research was funded in part by the Disruptive Technology Office, the Office of Naval Research and the National Aeronautics and Space Administration. The authors are affiliated with the Joint Quantum Institute, a collaboration of NIST and the University of Maryland.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov
http://www.nist.gov/public_affairs/quantum/quantum_info_index.html

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>