Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killer electrons in space are now less mysterious

27.07.2007
A rare, timely conjunction of ground-based instrumentation and a dozen satellites has helped scientists better understand how electrons in space can turn into ‘killers’. ESA’s Cluster constellation has contributed crucially to the finding.

‘Killer’ electrons are highly energetic, negatively charged particles found in near-Earth space. They can critically, and even permanently, damage satellites in orbit, including telecommunication satellites, and pose a hazard to astronauts.

Several theories have been formulated in the past to explain the origin of killer electrons, and many uncoordinated observations have already been performed. Recently, scientists got a boost in their understanding of this hazardous phenomenon. This was possible thanks to a unique set of data, collected simultaneously, by a global armada of ground and space observatories during the recovery phase of a large geomagnetic storm.

The results come from complementary studies performed by teams led by Jonathan Rae at the University of Alberta, Canada and Qiugang Zong from the University of Massachusetts, Lowell, USA.

In the aftermath of the storm, the CARISMA (Canadian Array for Realtime Investigations of Magnetic Activity) magnetometer chain observed a type of Ultra Low Frequency (ULF) electromagnetic wave, well-known for creating killer electrons. CARISMA observed the so-called ‘Pc5 waves’ continuously, for many hours, during the recovery phase of a large geomagnetic storm on 25 November 2001. In the meantime, they were also picked up by more than half a dozen scientific satellites located inside Earth’s magnetic environment, or magnetosphere, including NASA’s Polar mission.

Meanwhile, ESA’s four Cluster satellites were located at the boundary of Earth’s magnetosphere, called the magnetopause. They observed undulations, or disturbances of the magnetopause, at the same frequency as that of Pc5 waves observed from inside the magnetosphere.

Taking into account data from all satellites, Earth-based radars and magnetometers, Rae's team were able to reveal the mechanism behind the scenario.

During this event, the velocity of solar wind - a continuous stream of solar particles impacting and shaping Earth’s magnetosphere – was measured at approximately 750 km/s, nearly twice its average speed. The impact of this fast flow of solar particles on Earth’s magnetosphere induced the undulations observed by Cluster.

In turn, these undulations drove compressional waves, which propagated inward from the magnetopause towards Earth. Close to the location of the Polar satellite, these compressional waves coupled with Earth’s magnetic field lines, making the field lines resonate at the frequency of Pc5 waves, which are able to create killer electrons.

Data from Cluster also played a key role in the findings of the study by Zong's team. They focused on the aftermath of another geomagnetic storm, which occurred on 31 October 2003. They not only confirmed that Pc5 waves accelerate electrons, but they have also succeeded in quantifying – for the first time, in situ – the velocity reached by the accelerated electrons.

“Earth’s magnetosphere is a very large, complex and variable system. This makes the understanding of ULF waves, together with the mechanisms for the energy transfer from space to ground, a very difficult matter,” says Philippe Escoubet, ESA's Cluster and Double Star Project Scientist.

“These new results on ULF waves and killer electrons once again highlight the need for simultaneous observations from space and ground. Only with constant monitoring with ground-based instruments can we put data obtained in space into a global context,” he added.

Arnaud Masson | alfa
Further information:
http://www.esa.int/esaSC/SEMEUMB474F_index_0.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>