Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building the mechanical nano computer

25.07.2007
A new type of electromechanical computer built from components a millionth the thickness of the human hair could soon be gearing up to do high speed computation, according to researchers writing in the New Journal of Physics today.

Long before silicon chips were to be found at the heart of the computer, even before transistors and thermionic valves, there was the concept of the mechanical computer, a machine to be built from levers, ratchets and cogs, complete with brass fittings and a Victorian flourish. The mechanical computer was never to be, at least not while microelectronics devices could carry out computations incredibly quickly by shuffling electrons.

Now, however, the emergence of nanotechnology brings with it the opportunity to manipulate materials close to the individual molecular level. So, could a nano-electromechanical computer be built?

Robert Blick and colleagues in the department of Electrical & Computer Engineering, at the University of Wisconsin-Madison, USA, believe so.

The UW-Madison team propose a fully mechanical computer based on electromechanical units, a billionth of a metre in size. These units might be based on tiny chunks of diamond or another superhard material that changes shape when an electric current is applied, so-called piezoelectric materials.

The units could be integrated into current silicon chip manufacturing processes and would operate essentially by pushing and pulling on each other, actuating connected elements to create switches, logic gates, and memory units. They would be the mechanical equivalent of the microscopic transistors on a silicon chip.

The fact that these nano-electromechanical units will be a thousandth the size of a transistor means that many, many more could be packed into the same space. The much smaller separation of logic gates also means that such a computer might eventually be made much faster than one based on the conventional silicon chip.

The researchers also point out that electromechanical elements will have several other advantages over silicon chip technology. They will use less power, for instance, and they will generate far less waste heat and so be able to operate at much higher temperatures without expensive and noisy cooling systems. They could also withstand voltage surges that can burn out a silicon chip. These advantages mean that the technology could be used in more extreme environments than today's computers, such as very hot conditions (exceeding 200 degrees Celsius), within high voltage electrical installations, or in the harsh environment of space.

This is a novel, breakthrough technology rather than an incremental change, which could lead to a new class of computer that is far more energy efficient than current machines, requires no cooling and can work in extreme environments. The technology exists to make the nano-electromechanical elements; the next step is to integrate them into a computational device and build a computer.

Helen MacBain | alfa
Further information:
http://www.iop.org/EJ/abstract/1367-2630/9/7/241

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>