Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building the mechanical nano computer

25.07.2007
A new type of electromechanical computer built from components a millionth the thickness of the human hair could soon be gearing up to do high speed computation, according to researchers writing in the New Journal of Physics today.

Long before silicon chips were to be found at the heart of the computer, even before transistors and thermionic valves, there was the concept of the mechanical computer, a machine to be built from levers, ratchets and cogs, complete with brass fittings and a Victorian flourish. The mechanical computer was never to be, at least not while microelectronics devices could carry out computations incredibly quickly by shuffling electrons.

Now, however, the emergence of nanotechnology brings with it the opportunity to manipulate materials close to the individual molecular level. So, could a nano-electromechanical computer be built?

Robert Blick and colleagues in the department of Electrical & Computer Engineering, at the University of Wisconsin-Madison, USA, believe so.

The UW-Madison team propose a fully mechanical computer based on electromechanical units, a billionth of a metre in size. These units might be based on tiny chunks of diamond or another superhard material that changes shape when an electric current is applied, so-called piezoelectric materials.

The units could be integrated into current silicon chip manufacturing processes and would operate essentially by pushing and pulling on each other, actuating connected elements to create switches, logic gates, and memory units. They would be the mechanical equivalent of the microscopic transistors on a silicon chip.

The fact that these nano-electromechanical units will be a thousandth the size of a transistor means that many, many more could be packed into the same space. The much smaller separation of logic gates also means that such a computer might eventually be made much faster than one based on the conventional silicon chip.

The researchers also point out that electromechanical elements will have several other advantages over silicon chip technology. They will use less power, for instance, and they will generate far less waste heat and so be able to operate at much higher temperatures without expensive and noisy cooling systems. They could also withstand voltage surges that can burn out a silicon chip. These advantages mean that the technology could be used in more extreme environments than today's computers, such as very hot conditions (exceeding 200 degrees Celsius), within high voltage electrical installations, or in the harsh environment of space.

This is a novel, breakthrough technology rather than an incremental change, which could lead to a new class of computer that is far more energy efficient than current machines, requires no cooling and can work in extreme environments. The technology exists to make the nano-electromechanical elements; the next step is to integrate them into a computational device and build a computer.

Helen MacBain | alfa
Further information:
http://www.iop.org/EJ/abstract/1367-2630/9/7/241

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>