Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building the mechanical nano computer

25.07.2007
A new type of electromechanical computer built from components a millionth the thickness of the human hair could soon be gearing up to do high speed computation, according to researchers writing in the New Journal of Physics today.

Long before silicon chips were to be found at the heart of the computer, even before transistors and thermionic valves, there was the concept of the mechanical computer, a machine to be built from levers, ratchets and cogs, complete with brass fittings and a Victorian flourish. The mechanical computer was never to be, at least not while microelectronics devices could carry out computations incredibly quickly by shuffling electrons.

Now, however, the emergence of nanotechnology brings with it the opportunity to manipulate materials close to the individual molecular level. So, could a nano-electromechanical computer be built?

Robert Blick and colleagues in the department of Electrical & Computer Engineering, at the University of Wisconsin-Madison, USA, believe so.

The UW-Madison team propose a fully mechanical computer based on electromechanical units, a billionth of a metre in size. These units might be based on tiny chunks of diamond or another superhard material that changes shape when an electric current is applied, so-called piezoelectric materials.

The units could be integrated into current silicon chip manufacturing processes and would operate essentially by pushing and pulling on each other, actuating connected elements to create switches, logic gates, and memory units. They would be the mechanical equivalent of the microscopic transistors on a silicon chip.

The fact that these nano-electromechanical units will be a thousandth the size of a transistor means that many, many more could be packed into the same space. The much smaller separation of logic gates also means that such a computer might eventually be made much faster than one based on the conventional silicon chip.

The researchers also point out that electromechanical elements will have several other advantages over silicon chip technology. They will use less power, for instance, and they will generate far less waste heat and so be able to operate at much higher temperatures without expensive and noisy cooling systems. They could also withstand voltage surges that can burn out a silicon chip. These advantages mean that the technology could be used in more extreme environments than today's computers, such as very hot conditions (exceeding 200 degrees Celsius), within high voltage electrical installations, or in the harsh environment of space.

This is a novel, breakthrough technology rather than an incremental change, which could lead to a new class of computer that is far more energy efficient than current machines, requires no cooling and can work in extreme environments. The technology exists to make the nano-electromechanical elements; the next step is to integrate them into a computational device and build a computer.

Helen MacBain | alfa
Further information:
http://www.iop.org/EJ/abstract/1367-2630/9/7/241

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>