Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building the mechanical nano computer

25.07.2007
A new type of electromechanical computer built from components a millionth the thickness of the human hair could soon be gearing up to do high speed computation, according to researchers writing in the New Journal of Physics today.

Long before silicon chips were to be found at the heart of the computer, even before transistors and thermionic valves, there was the concept of the mechanical computer, a machine to be built from levers, ratchets and cogs, complete with brass fittings and a Victorian flourish. The mechanical computer was never to be, at least not while microelectronics devices could carry out computations incredibly quickly by shuffling electrons.

Now, however, the emergence of nanotechnology brings with it the opportunity to manipulate materials close to the individual molecular level. So, could a nano-electromechanical computer be built?

Robert Blick and colleagues in the department of Electrical & Computer Engineering, at the University of Wisconsin-Madison, USA, believe so.

The UW-Madison team propose a fully mechanical computer based on electromechanical units, a billionth of a metre in size. These units might be based on tiny chunks of diamond or another superhard material that changes shape when an electric current is applied, so-called piezoelectric materials.

The units could be integrated into current silicon chip manufacturing processes and would operate essentially by pushing and pulling on each other, actuating connected elements to create switches, logic gates, and memory units. They would be the mechanical equivalent of the microscopic transistors on a silicon chip.

The fact that these nano-electromechanical units will be a thousandth the size of a transistor means that many, many more could be packed into the same space. The much smaller separation of logic gates also means that such a computer might eventually be made much faster than one based on the conventional silicon chip.

The researchers also point out that electromechanical elements will have several other advantages over silicon chip technology. They will use less power, for instance, and they will generate far less waste heat and so be able to operate at much higher temperatures without expensive and noisy cooling systems. They could also withstand voltage surges that can burn out a silicon chip. These advantages mean that the technology could be used in more extreme environments than today's computers, such as very hot conditions (exceeding 200 degrees Celsius), within high voltage electrical installations, or in the harsh environment of space.

This is a novel, breakthrough technology rather than an incremental change, which could lead to a new class of computer that is far more energy efficient than current machines, requires no cooling and can work in extreme environments. The technology exists to make the nano-electromechanical elements; the next step is to integrate them into a computational device and build a computer.

Helen MacBain | alfa
Further information:
http://www.iop.org/EJ/abstract/1367-2630/9/7/241

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>