Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building the mechanical nano computer

25.07.2007
A new type of electromechanical computer built from components a millionth the thickness of the human hair could soon be gearing up to do high speed computation, according to researchers writing in the New Journal of Physics today.

Long before silicon chips were to be found at the heart of the computer, even before transistors and thermionic valves, there was the concept of the mechanical computer, a machine to be built from levers, ratchets and cogs, complete with brass fittings and a Victorian flourish. The mechanical computer was never to be, at least not while microelectronics devices could carry out computations incredibly quickly by shuffling electrons.

Now, however, the emergence of nanotechnology brings with it the opportunity to manipulate materials close to the individual molecular level. So, could a nano-electromechanical computer be built?

Robert Blick and colleagues in the department of Electrical & Computer Engineering, at the University of Wisconsin-Madison, USA, believe so.

The UW-Madison team propose a fully mechanical computer based on electromechanical units, a billionth of a metre in size. These units might be based on tiny chunks of diamond or another superhard material that changes shape when an electric current is applied, so-called piezoelectric materials.

The units could be integrated into current silicon chip manufacturing processes and would operate essentially by pushing and pulling on each other, actuating connected elements to create switches, logic gates, and memory units. They would be the mechanical equivalent of the microscopic transistors on a silicon chip.

The fact that these nano-electromechanical units will be a thousandth the size of a transistor means that many, many more could be packed into the same space. The much smaller separation of logic gates also means that such a computer might eventually be made much faster than one based on the conventional silicon chip.

The researchers also point out that electromechanical elements will have several other advantages over silicon chip technology. They will use less power, for instance, and they will generate far less waste heat and so be able to operate at much higher temperatures without expensive and noisy cooling systems. They could also withstand voltage surges that can burn out a silicon chip. These advantages mean that the technology could be used in more extreme environments than today's computers, such as very hot conditions (exceeding 200 degrees Celsius), within high voltage electrical installations, or in the harsh environment of space.

This is a novel, breakthrough technology rather than an incremental change, which could lead to a new class of computer that is far more energy efficient than current machines, requires no cooling and can work in extreme environments. The technology exists to make the nano-electromechanical elements; the next step is to integrate them into a computational device and build a computer.

Helen MacBain | alfa
Further information:
http://www.iop.org/EJ/abstract/1367-2630/9/7/241

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>