Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tightly packed molecules lend unexpected strength to nanothin sheet of material

24.07.2007
Tightly packed molecules lend unexpected strength to nanothin sheet of material

Scientists at the University of Chicago and Argonne National Laboratory have discovered the surprising strength of a sheet of nanoparticles that measures just 50 atoms in thickness.

“It’s an amazing little marvel,” said Heinrich Jaeger, Professor in Physics at the University of Chicago. “This is not a very fragile layer, but rather a robust, resilient membrane.”

Even when suspended over a tiny hole and poked with an ultrafine tip, the membrane boasts the equivalent strength of an ultrathin sheet of plexiglass that maintains its structural integrity at relatively high temperatures.

“When we first realized that they can be suspended freely in air, it truly surprised all of us,” said Xiao-Min Lin, a physicist at Argonne’s Center for Nanoscale Materials.

The characteristics of the nanoparticles are described in the July 22 issue of the journal Nature Materials in a paper written by Jaeger and Lin, along with Klara Mueggenburg, a graduate student in physics at the University of Chicago, and Rodney Goldsmith, an undergraduate student at Xavier University in New Orleans who participated as part of the National Science Foundation’s Research Experience for Undergraduates program. The work was funded by the NSF-supported Materials Science and Engineering Center at the University of Chicago. Additional support came from the U.S. Department of Energy.

The material’s characteristics make it a promising candidate for use as a highly sensitive pressure sensor in precision technological applications. “If we use different types of nanoparticles to make the same kind of suspended membrane, we can even imagine using these devices as chemical filters to promote catalytic reactions on a very small length scale,” Lin said.

As artificial atoms, the nanoparticles might also serve as building blocks in assembling specially designed nano-objects. “This is the ultimate limit of such a solid. It’s just one layer,” Jaeger said. “What is interesting is that already one layer is so resilient and has these interesting properties.”

But the payoff is scientific as well as technological. Scientists had already discovered that the electronic properties of semiconductor material can change dramatically when its tiniest metallic components are tightly packed between organic molecules, a phenomenon called nano-confinement. “But now we find that mechanical properties can also change dramatically. On a basic science level, that’s why this is exciting,” Jaeger said.

The experimental material consisted of gold particles separated by organic “bumpers” to keep them from coming into direct contact. The research team suspended this array of nanoparticles in a solution, then spread the solution across a small chip of silicon, a popular semiconductor material. When the solution dried, it left behind a blanket of nanoparticles that drape themselves over holes in the chip, each hole measuring hundreds of nanoparticles in diameter. Then the researchers probed the strength of the freely suspended nanoparticle layer by poking it with the tip of an atomic force microscope.

Plexiglass draws its strength from the nature of its polymers, long chains of molecules that become entangled with one another. But the short-chain polymers the research group used to link the nanoparticles were scarcely long enough to qualify as polymers at all.

“They probably do not have the chance to entangle like a ‘card-carrying’ polymer would do,” Jaeger said. “The molecules are anchored to the gold particles, but only on one end. The strength comes from compressing them between the gold particles.”

The research team also found that the material held together when heated until reaching temperatures of 210 degrees and beyond.

While the Chicago-Argonne experiments focused on two-dimensional sheets, they generally agree with computer simulations on similar three-dimensional assemblies of smaller nanoparticles conducted by Uzi Landman’s team at Georgia Institute of Technology.

“The behavior of these systems is sensitive to dimensionality, and this is a subject that should be explored in the future,” said Landman, the Fuller Callaway Chair in Computational Materials Science at the Georgia Institute of Technology. “This actually brings another control parameter into question. Change the dimensionality, you change the properties.”

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>