Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arizona Radio Observatory Team Discovers Supergiant Star Spews Molecules Needed For Life

24.07.2007
University of Arizona astronomers who are probing the oxygen-rich environment around a supergiant star with one of the world's most sensitive radio telescopes have discovered a score of molecules that include compounds needed for life.
"I don't think anyone would have predicted that VY Canis Majoris is a molecular factory. It was really unexpected," said Arizona Radio Observatory
(ARO) Director Lucy Ziurys, UA professor of astronomy and of chemistry.
"Everyone thought that the interesting chemistry in gas clouds around old stars was happening in envelopes around nearer, carbon-rich stars," Ziurys said. "But when we started looking closely for the first time at an oxygen-rich object, we began finding all these interesting things that weren't supposed to be there."

VY Canis Majoris, one of the most luminous infrared objects in the sky, is an old star about 5,000 light years away. It's a half million times more luminous than the sun, but glows mostly in the infrared because it's a cool star. It truly is "supergiant" -- 25 times as massive as the sun and so huge that it would fill the orbit of Jupiter. But the star is losing mass so fast that in a million years -- an astronomical eyeblink -- it will be gone. The star already has blown away a large part of its atmosphere, creating its surrounding envelope that contains about twice as much oxygen as carbon.

Ziurys and her colleagues are not yet halfway through their survey of VY Canis Majoris, but they've already published in the journal, Nature (June 28 issue), about their observations of a score of chemical compounds. These include some molecules that astronomers have never detected around stars and are needed for life.

Among the molecules Ziurys and her team reported in Nature are table salt (NaCl); a compound called phosphorus nitride (PN), which contains two of the five most necessary ingredients for life; molecules of HNC, which is a variant form of the organic molecule, hydrogen cyanide; and an ion molecule form of carbon monoxide that comes with a proton attached (HCO+).

Astronomers have found very little phosphorus or ion molecule chemistry in outflows from cool stars until now.

"We think these molecules eventually flow from the star into the interstellar medium, which is the diffuse gas between stars. The diffuse gas eventually collapses into denser molecular clouds, and from these solar systems eventually form," Ziurys said.

Comets and meteorites dump about 40,000 tons of interstellar dust on Earth each year. We wouldn't be carbon-based life forms otherwise, Ziurys noted, because early Earth lost all of its original carbon in the form of a methane atmosphere.

"The origin of organic material on Earth -- the chemical compounds that make up you and me -- probably came from interstellar space. So one can say that life's origins really begin in chemistry around objects like VY Canis Majoris."

Astronomers previously studied VY Canis Majoris with optical and infrared telescopes. "But that's kind of like diving in with a butcher knife to look at what's there, when what you need is an oyster fork," Ziurys said.

The Arizona Radio Observatory's 10-meter Submillimeter Telescope (SMT) on Mount Graham, Ariz., excels as a sensitive stellar "oyster fork." Chemical molecules each possess their own unique radio frequencies. The astronomers identify the unique radio signatures of chemical compounds in laboratory work, enabling them to identify the molecules in space.

The ARO team recently began testing a new receiver in collaboration with the National Radio Astronomy Observatory. The receiver was developed as a prototype for the Atacama Large Millimeter Array, a telescope under construction in Chile. The state-of-the-art receiver has given the SMT 10 times more sensitivity at millimeter wavelengths than any other radio telescope. The SMT can now detect emission weaker than a typical light bulb from distant space at very precise frequencies.

The UA team has discovered that the molecules aren't just flowing out as a gas sphere around VY Canis Majoris, but also are blasting out as jets through the spherical envelope.

"The signals we receive show not only which molecules are seen, but how the molecules are moving toward and away from us," said Stefanie Milam, a recent doctoral graduate on the ARO team.

The molecules flowing out from VY Canis Majoris trace complex winds in three outflows: the general, spherical outflow from the star, a jet of material blasting out towards Earth, and another jet shooting out a 45 degree angle away from Earth.

Astronomers have seen bipolar outflows from stars before, but not two, unconnected, asymmetric and apparently random outflows, Ziurys said.

Ziurys said she believes the two random jets are evidence for what astronomers earlier proposed are "supergranules" that form in very massive stars, and has been seen in Betelgeuse. Supergranules are huge cells of gas that form inside the star, then float to the surface and are ejected out of the star, where they cool in space and form molecules, creating jet outflows with certain molecular compositions.

Back in the 1960s, no one believed molecules could survive the harsh environment of space. Ultraviolet radiation supposedly reduced matter to atoms and atomic ions. Now scientists conclude that at least half of the gas in space between the stars within the 33-light-year inner galaxy is molecular, Ziurys said. "Our results are more evidence that we live in a really molecular universe, as opposed to an atomic one," Ziurys said.

The Arizona Radio Observatory (ARO) owns and operates two radio telescopes in southern Arizona: The former NRAO 12 Meter (KP12m) Telescope located 50 miles southwest of Tucson on Kitt Peak and the Submillimeter Telescope (SMT) located on Mount Graham near Safford, Ariz. The telescopes are operated around-the-clock for about nine to 10 months per year for a combined 10,000 hours per observing season. About 1,500 hours are dedicated to sub-mm wavelengths at the SMT. The ARO offices are centrally located in the Steward Observatory building on the UA campus in Tucson.

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>