Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arizona Radio Observatory Team Discovers Supergiant Star Spews Molecules Needed For Life

24.07.2007
University of Arizona astronomers who are probing the oxygen-rich environment around a supergiant star with one of the world's most sensitive radio telescopes have discovered a score of molecules that include compounds needed for life.
"I don't think anyone would have predicted that VY Canis Majoris is a molecular factory. It was really unexpected," said Arizona Radio Observatory
(ARO) Director Lucy Ziurys, UA professor of astronomy and of chemistry.
"Everyone thought that the interesting chemistry in gas clouds around old stars was happening in envelopes around nearer, carbon-rich stars," Ziurys said. "But when we started looking closely for the first time at an oxygen-rich object, we began finding all these interesting things that weren't supposed to be there."

VY Canis Majoris, one of the most luminous infrared objects in the sky, is an old star about 5,000 light years away. It's a half million times more luminous than the sun, but glows mostly in the infrared because it's a cool star. It truly is "supergiant" -- 25 times as massive as the sun and so huge that it would fill the orbit of Jupiter. But the star is losing mass so fast that in a million years -- an astronomical eyeblink -- it will be gone. The star already has blown away a large part of its atmosphere, creating its surrounding envelope that contains about twice as much oxygen as carbon.

Ziurys and her colleagues are not yet halfway through their survey of VY Canis Majoris, but they've already published in the journal, Nature (June 28 issue), about their observations of a score of chemical compounds. These include some molecules that astronomers have never detected around stars and are needed for life.

Among the molecules Ziurys and her team reported in Nature are table salt (NaCl); a compound called phosphorus nitride (PN), which contains two of the five most necessary ingredients for life; molecules of HNC, which is a variant form of the organic molecule, hydrogen cyanide; and an ion molecule form of carbon monoxide that comes with a proton attached (HCO+).

Astronomers have found very little phosphorus or ion molecule chemistry in outflows from cool stars until now.

"We think these molecules eventually flow from the star into the interstellar medium, which is the diffuse gas between stars. The diffuse gas eventually collapses into denser molecular clouds, and from these solar systems eventually form," Ziurys said.

Comets and meteorites dump about 40,000 tons of interstellar dust on Earth each year. We wouldn't be carbon-based life forms otherwise, Ziurys noted, because early Earth lost all of its original carbon in the form of a methane atmosphere.

"The origin of organic material on Earth -- the chemical compounds that make up you and me -- probably came from interstellar space. So one can say that life's origins really begin in chemistry around objects like VY Canis Majoris."

Astronomers previously studied VY Canis Majoris with optical and infrared telescopes. "But that's kind of like diving in with a butcher knife to look at what's there, when what you need is an oyster fork," Ziurys said.

The Arizona Radio Observatory's 10-meter Submillimeter Telescope (SMT) on Mount Graham, Ariz., excels as a sensitive stellar "oyster fork." Chemical molecules each possess their own unique radio frequencies. The astronomers identify the unique radio signatures of chemical compounds in laboratory work, enabling them to identify the molecules in space.

The ARO team recently began testing a new receiver in collaboration with the National Radio Astronomy Observatory. The receiver was developed as a prototype for the Atacama Large Millimeter Array, a telescope under construction in Chile. The state-of-the-art receiver has given the SMT 10 times more sensitivity at millimeter wavelengths than any other radio telescope. The SMT can now detect emission weaker than a typical light bulb from distant space at very precise frequencies.

The UA team has discovered that the molecules aren't just flowing out as a gas sphere around VY Canis Majoris, but also are blasting out as jets through the spherical envelope.

"The signals we receive show not only which molecules are seen, but how the molecules are moving toward and away from us," said Stefanie Milam, a recent doctoral graduate on the ARO team.

The molecules flowing out from VY Canis Majoris trace complex winds in three outflows: the general, spherical outflow from the star, a jet of material blasting out towards Earth, and another jet shooting out a 45 degree angle away from Earth.

Astronomers have seen bipolar outflows from stars before, but not two, unconnected, asymmetric and apparently random outflows, Ziurys said.

Ziurys said she believes the two random jets are evidence for what astronomers earlier proposed are "supergranules" that form in very massive stars, and has been seen in Betelgeuse. Supergranules are huge cells of gas that form inside the star, then float to the surface and are ejected out of the star, where they cool in space and form molecules, creating jet outflows with certain molecular compositions.

Back in the 1960s, no one believed molecules could survive the harsh environment of space. Ultraviolet radiation supposedly reduced matter to atoms and atomic ions. Now scientists conclude that at least half of the gas in space between the stars within the 33-light-year inner galaxy is molecular, Ziurys said. "Our results are more evidence that we live in a really molecular universe, as opposed to an atomic one," Ziurys said.

The Arizona Radio Observatory (ARO) owns and operates two radio telescopes in southern Arizona: The former NRAO 12 Meter (KP12m) Telescope located 50 miles southwest of Tucson on Kitt Peak and the Submillimeter Telescope (SMT) located on Mount Graham near Safford, Ariz. The telescopes are operated around-the-clock for about nine to 10 months per year for a combined 10,000 hours per observing season. About 1,500 hours are dedicated to sub-mm wavelengths at the SMT. The ARO offices are centrally located in the Steward Observatory building on the UA campus in Tucson.

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>